
MONTEREY, CALIFORNIA

THESIS

ENHANCED PRECISION GEOLOCATION IN 4G
WIRELESS NETWORKS

by

Jason Q. McClintic

March 2013

Thesis Co-Advisors: Murali Tummula
John McEachen

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Enhanced Precision Geolocation in 4G Wire-
less Networks

5. FUNDING NUMBERS

6. AUTHOR(S): Jason Q. McClintic

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9.SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol Number: NA

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The objective of this thesis is to improve the performance of geolocation schema though estimating the speed of
light via the refractive index of air, estimating the target velocity, and exercising receiver choice. A method for
incorporating the speed of light into geolocation models is proposed in this thesis. A generic receiver choice algorithm
is proposed with application to time-of-arrival, time-difference-of-arrival, and Doppler velocity estimation schemes.
An object-oriented MATLAB package was developed to describe the environment, network, target behavior, simulate
data, and conduct simulation study. Simulation results show that using an incorrect estimate of propagation velocity,
when timing information is sufficiently precise, can yield position estimates that are, on average, significantly less
accurate and less precise. Further, simulation results show that inclusion of choice enables large improvements in
both the average error and the dispersion of the errors.

14. SUBJECT TERMS
geolocation, algorithms, 4G mobile communication, optimization, WiMAX, Wireless networks

15. NUMBER
OF PAGES
251
16. PRICE CODE

17. SECURITYCLASSIFICATION
OF REPORT
Unclassified

18. SECURITYCLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited.

ENHANCED PRECISION GEOLOCATION IN 4G WIRELESS NETWORKS

Jason Q. McClintic
Lieutenant, United States Navy

B.A., University of Saint Thomas, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2013

Author: Jason Q. McClintic

Approved By: Murali Tummala
Thesis Advisor

John McEachen
Thesis Co-Advisor

Clark Robertson
Chair, Department of Electrical and
Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The objective of this thesis is to improve the performance of geolocation schema though

estimating the speed of light via the refractive index of air, estimating the target velocity,

and exercising receiver choice. A method for incorporating the speed of light into geoloca-

tion models is proposed in this thesis. A generic receiver choice algorithm is proposed with

application to time-of-arrival, time-difference-of-arrival, and Doppler velocity estimation

schemes. An object-oriented MATLAB package was developed to describe the environ-

ment, network, target behavior, simulate data, and conduct simulation study. Simulation

results show that using an incorrect estimate of propagation velocity, when timing informa-

tion is sufficiently precise, can yield position estimates that are, on average, significantly

less accurate and less precise. Further, simulation results show that inclusion of choice

enables large improvements in both the average error and the dispersion of the errors.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION . 1
A. Background . 1

B. Related Work . 3

C. Objectives and Approach . 3

D. Organization . 4

II. THEORY AND BACKGROUND . 7
A. Geolocation of Emitters . 7

B. Geolocation using Range Estimates 9
1. Spatial Model . 9
2. Time of Arrival Algorithms 10
3. Time Difference of Arrival Algorithms 16

C. Velocity Estimation from Frequency Information 17
1. Spatial Model and the Doppler Equation 18
2. Doppler Velocity Estimation with a Known Transmitted Fre-

quency . 19

D. Refractive Index and Refractivity . 22

E. Estimating the Refractivity of Air . 23
1. Empirical Formulae for Refractivity Estimation 23
2. Partial Pressure of Dry Air and Water Vapor 26

F. IEEE 802.16 . 27
1. OFDMA Waveform . 27
2. Network Specification . 29
3. Synchronization and Ranging 29
4. Extracting Time and Frequency Information 30

III. BIASES ARISING FROM REFRACTIVITY MISMATCH 33
A. Propagation Velocity Bias . 33

B. Range Estimate Bias . 33

C. Target Velocity Bias . 38

IV. RECEIVER PAIR SELECTION . 41
A. Terminology . 42

vii

1. Notation . 42
2. Choosing Linear Constraints 42

B. Application to Circular Multilateration 43
1. Receiver Pair Choice Algorithm 44
2. Computational Complexity 46

C. Application to Hyperbolic Multilateration 47
1. Modified TDOA Position Estimation Algorithm 47
2. Receiver Pair Choice Algorithm 49
3. Computational Complexity 52

D. Application to Doppler Velocity Estimation 53

V. SIMULATION AND RESULTS . 55
A. Simulation Process . 55

B. Class Structure of the Simulation Software 57
1. Environment Classes . 59
2. Network Class . 59
3. Target Classes . 60
4. Data Classes . 60
5. Analysis Subpackage . 60

a. TDOA Class Family 61
b. TOA Class Family 62
c. Doppler Class Family 63
d. PositionError Class 63
e. VelocityError Class 64
f. Graph Class . 64

C. Simulation Design . 64
1. Exogenous Variables . 65
2. Error Structure . 65
3. Impact of Receiver Choice on Randomly Distributed Targets . 65
4. Impact of Refractivity . 66
5. A First Look at the Tracking Problem 66

D. Results . 68
1. Receiver Choice . 68
2. Refractivity Effects . 73
3. Tracking . 75

E. Discussion . 78

VI. CONCLUSION . 81
A. Summary of Work . 81

viii

B. Significant Results . 82

C. Future Work . 83

APPENDIX A. A BRIEF INTRODUCTION TO UML DIAGRAMS 87
A. Class Diagrams . 87

B. Activity Diagrams . 88

APPENDIX B. MATLAB CODE IMPLEMENTING THE GEOLOCATION
PACKAGE . 91
A. Environment Class Family . 91

1. Environment Class . 91
2. ExampleEnvironment Class 96

B. Network Class Family . 97

C. Target and its Related Classes . 105
1. Target Class . 105
2. RandomTarget Class . 108
3. CVFWTarget Class . 110
4. CVRWTarget Class . 115

D. Data and its Related Classes . 117
1. Data Class . 117
2. SimulatedData Class . 123
3. UserData Class . 126

E. The Analysis Subpackage . 129
1. Doppler . 129
2. Doppler4 . 132
3. Doppler4A . 137
4. Graph . 144
5. PositionError Class . 155
6. TDOA Class . 158
7. TDOA5 Class . 160
8. TDOA5A Class . 165
9. TDOA5B Class . 172
10. TOA Class . 178
11. TOA4 Class . 180
12. TOA4A Class . 186
13. TOA4B Class . 191
14. VelocityError Class . 197

F. Utility Functions . 200
1. parPresH20.m . 200

ix

2. refract.m . 202
3. refractiveProfile.m . 203
4. velocityDifference.m . 204
5. rangeBias.m . 205
6. rangeBiasProfile.m . 206
7. rangeBiasTime.m . 207
8. rangeBiasTimeProfile.m . 208
9. environmentalRangeBiasProfile.m 210
10. rb2tauPlot.m . 211

APPENDIX C. EXAMPLE SIMULATION SCRIPT 215

LIST OF REFERENCES . 223

INITIAL DISTRIBUTION LIST . 227

x

LIST OF FIGURES

Figure 1. Flowchart of the overall geolocation estimation process including re-
fractivity estimation and receiver choice. 5

Figure 2. Spatial model of mobile subscriber position as the intersection of
three range circles. 10

Figure 3. The case of pij to the left of pi. 12
Figure 4. The case of pij in between pi and pj 12
Figure 5. The case of pij to the right of pi and pj 12
Figure 6. An example of range differences from three receivers forming two

hyperbola, the intersection of which is the estimated position of the
transmitter. 16

Figure 7. Model of transmitter motion with a nominal velocity vector indicating
the transmitter is moving away from the receiver. 20

Figure 8. Flowchart of the process of estimating local refractivity from atmo-
spheric conditions. 23

Figure 9. Refractivity of the atmosphere as a function of temperature and dew-
point spread at 1000 millibar total atmospheric pressure. 25

Figure 10. Partial pressure of water at 1000 millibars total pressure as a function
of temperature and dew-point spread. 27

Figure 11. An OFDMA symbol in the frequency domain (three channel schematic
example). From [1, Fig. 218]. 28

Figure 12. Example of an OFDMA frame (with only mandatory zone) in TDD
mode. From [1, Fig. 222]. 28

Figure 13. Range bias as a function of propagation time given refractivity and
using the true value of the speed of light. 34

Figure 14. Range bias per 10µ seconds of propagation time at 850 millibar total
atmospheric pressure and using the true value of the speed of light. . . 35

Figure 15. Range bias per 10µ seconds of propagation time at 1000 millibar total
atmospheric pressure and using the true value of the speed of light. . . 36

Figure 16. Range bias per 10µ seconds of propagation time at 1100 millibar total
atmospheric pressure and using the true value of the speed of light. . . 36

Figure 17. Range bias normalized by timing adjust unit-based range error stan-
dard deviation. 37

Figure 18. An example of tower choice in which seven receivers are available of
which four or five are required. 41

Figure 19. The proposed constraint selection algorithm. 43

xi

Figure 20. The proposed constraint selection algorithm for TOA position esti-
mation. 46

Figure 21. The proposed constraint selection algorithm for TDOA position esti-
mation. 52

Figure 22. The proposed constraint selection algorithm for Doppler velocity es-
timation. 53

Figure 23. Activity diagram for a single simulation scenario. 56
Figure 24. Activity diagram for a simulation scenario with multiple runs. 58
Figure 25. Structure diagram for the Geolocation package. 59
Figure 26. Structure diagram for the Analysis subpackage. 61
Figure 27. Structure diagram for the Analysis subpackage with external depen-

dencies. 61
Figure 28. Test case for measuring the performance of TOA algorithms when

applied to the tracking problem. 67
Figure 29. Kernel density estimate of the mean L2 error when using the Doppler4

and Doppler4A algorithms. 70
Figure 30. Kernel density estimate of the inter-quartile range of L2 errors when

using the Doppler4 and Doppler4A algorithms. 70
Figure 31. Kernel density estimate of the mean L2 error when using the TDOA5,

TDOA5A, and TDOA5B algorithms. 71
Figure 32. Kernel density estimate of the standard deviation of L2 errors when

using the TDOA5, TDOA5A, and TDOA5B algorithms. 72
Figure 33. Kernel density estimate of the median L2 error when using the TOA4,

TOA4A, and TOA4B algorithms. 72
Figure 34. Kernel density estimate of the inter-quartile range of L2 errors when

using the TOA4, TOA4A, and TOA4B algorithms. 73
Figure 35. Kernel density estimate of the mean L2 error at two different refrac-

tivity values when estimating velocity in a 100 MHz network. 74
Figure 36. Kernel density estimate of the mean L2 error at two different refrac-

tivity values when estimating position using the TDOA5B algorithms
in a 100 MHz network. 74

Figure 37. Kernel density estimate of the mean L2 error at two different refrac-
tivity values when estimating position using the TOA4A and TOA4B
algorithms in a 100 MHz network. 75

Figure 38. Kernel density estimate of the standard deviation of the L2 error at
two different refractivity values when estimating position using the
TOA4A and TOA4B algorithms in a 100 MHz network. 76

xii

Figure 39. Kernel density estimate of the L2 errors in the x-y plane when using
the TOA4, TOA4A, and TOA4B algorithms to track a target. 77

Figure 40. The L2 error in the x-y plane when using the TOA4, TOA4A, and
TOA4B algorithms to track a single target as a function of time. . . . 77

Figure 41. An example UML note with connector. 87
Figure 42. An example class diagram. 87
Figure 43. An example activity diagram. 89

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

LIST OF TABLES

Table 1. Summary of the TOA solutions. 14
Table 2. Primitive IEEE 802.16 OFDMA network parameters. 29
Table 3. Derived IEEE 802.16 OFDMA network parameters. 29
Table 4. Common simulation parameters for assessing receiver choice. 66
Table 5. Summary of the major features of the various algorithms. 68
Table 6. Summary of the impact of receiver choice on selected performance

measures relative to the relevant baseline algorithm. 69
Table 7. Approximate computation times for random target scenarios. 79

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

LIST OF ACRONYMS AND ABBREVIATIONS

BS Base station

FCC United States Federal Communications Commission

DAMA Demand Assigned Multiple Access

IEEE Institute for Electrical and Electronics Engineering

IEEE 802.16 IEEE Standard 802.16 for Local and metropolitan area networks–

Part 16: Air Interface for Broadband Wireless Access Systems

DL Downlink

DL-MAP Downlink Map

DVE Doppler Velocity Estimation

E911 Enhanced 911

FA Frequency Adjust

FDD Frequency Division Duplex

GPS Global Positioning System

LOS Line of Sight

MAC Medium Access Control Layer

MS Mobile Subscriber

NLOS Non-Line of Sight

OFDM Orthogonal Frequency-Division Multiplexing

xvii

OFDMA Orthogonal Frequency-Division Multiple Access

PHY Physical Layer

PPM Parts Per Million

PS Physical Slot

RCVR Reciever

RF Radio Frequency

RNG REQ Range Request message

RNG RSP Range Response message

SS Subscriber Station

TA Timing Adjust

TDD Time Division Duplex

TDMA Time Division Multiple Access

TDOA Time-Difference-of-Arrival

TOA Time-of-Arrival

UL Uplink

UL-MAP Uplink Map

xviii

EXECUTIVE SUMMARY

The ability to locate a cellular handset is of growing importance in the public and private

sector for provision of location-based services. Existing methods commonly assume that

the speed of light is a known constant and employ the available information in a predeter-

mined way. The 4G wireless network taken as an example in this thesis conforms to the

requirements of Institute for Electrical and Electronic Engineering Standard 802.16 for lo-

cal and metropolitan area networks–Part 16: Air Interface for Broadband Wireless Access

Systems, especially those portions describing an orthogonal frequency-division multiple

access (OFDMA) network.

The objective of this thesis is to improve the performance of geolocation schema.

The methods considered are time-of-arrival (TOA), time-difference-of-arrival (TDOA), and

differential Doppler (DD). Improvement is accomplished by estimating the speed of light

and exercising receiver choice.

A generic receiver choice algorithm and applications to three different geolocation

algorithms are proposed. The proposed method uses a simple, linear algebra-based decision

rule to choose constraint equations that together may be expected to be better conditioned

than the naive choice made in the original algorithms taken from the literature. This work

is believed to be new to the geolocation literature. A new MATLAB package, Geolocation,

was developed to implement the various models, algorithms, and other tools necessary to

the simulation process. The computational complexity of the proposed constraint choice

scheme for TOA and DD is on the order of the square of the number of receivers. For

TDOA, it is on the order of the number of receivers to the fourth power.

Simulation results show addition of unweighted receiver choice to the TOA and

TDOA algorithms yields 76% improvement of the median mean error for both. A 34% im-

provement in the median mean error is obtained by the addition of an unweighted receiver

choice to the DD algorithm. The median standard deviations of the errors are improved by

91%, 91%, and 75%, respectively.

xix

There are many possible lines of future work either to increase the level of real-

ism of the model or extend what is known or can be done with the available data. These

include more realistic target mobility models, implementation of tracking algorithms, and

development of estimate quality metrics.

The work presented in this thesis is of both theoretical and practical significance.

A new method of receiver choice for geolocation is proposed. Applying this proposed

method to three different geolocation estimators in the context of a simulated IEEE 802.16

OFDMA network yields substantial improvement in performance. Finally, the proposed

methods and the associated MATLAB package provide a starting point for a wide range of

future research in this area.

xx

ACKNOWLEDGMENTS

For friends and allies,

To mentors and editors;

My thanks forever.

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

I. INTRODUCTION

Refinements to methods for passive geolocation of emitters, where these emitters

are taken to be mobile devices in an Institute for Electrical and Electronics Engineering

(IEEE) Standard 802.16 for Local and metropolitan area networks–Part 16: Air Interface

for Broadband Wireless Access Systems (IEEE 802.16) compliant wireless communica-

tions network, are developed in this work [1]. This work follows that of [2] through both

refinement and extension. Refinement is achieved through incorporation of clear air phys-

ical effects on the speed of propagation of radio frequency waves through the atmosphere.

Two extensions are proposed. The first is by using the principles of the Doppler effect to

compute estimated relative motion in addition to location. The second is to develop schema

for exploiting choice of observing receiver to improve the performance of the basic position

and velocity estimators. In this thesis the device to be located is known as a transmitter un-

less it must have some IEEE 802.16 OFDMA-specific feature, in which case it is known as

a mobile station (MS). Likewise, the network equipment at which data about the transmitter

is collected is known as receivers unless it must have some IEEE 802.16 OFDMA-specific

feature, in which case it is known as a base station (BS).

A. BACKGROUND

The ability to locate a cellular handset or mobile station is one of growing impor-

tance in a number of areas. Central to all of them is that knowing the cellular handset’s

location is critical to the provision of some service. Two major areas in the civilian sector

in which the ability to infer cellular handset’s location information are emergency services

and non-emergency location-based services. In either use case, it is clear that better position

accuracy and precision contribute to the efficacy and relevance of the provided services.

The first case concerns provision of emergency services. Both the United States and

the European Union have active regulatory efforts related to the ability to locate a cellular

1

phone [3]. In the United States, this process is under the purview of the Federal Com-

munications Commission (FCC) though the Enhanced 911 (E911) set of regulations. The

corresponding set of European regulations is known as E112 [4]. Australia in recent years

has implemented a National Emergency Warning System using text messages delivered to

cell phones [5]. The November 1999 FCC E911 regulations specify maximum radial error

requirements for handset location in order to facilitate effective provision of emergency

services. E911 requires position estimate error of less than 50.0 m using handset-based or

100.0 m using network-based techniques for at least 67 percent of callers. Further, 95 per

cent of callers are required to be able to be located to within 150 m using handset-based or

300 m using network-based techniques [3], [4]. While Australia’s system for mass public

alerts does not hinge on high accuracy position information, there is no reason to believe

that the E911 or E112 regulations will not gradually specify progressively higher degrees of

both accuracy and precision and, thereby, continue to drive the need for better geolocation

systems.

Additionally, there are a growing number of non-emergency location based ser-

vices. Some of the more well known are GM’s OnStar and Mercedes-Benz’s TeleAid

systems [3]. Another major use has been the provision of yellow page services which pro-

vide the user with location specific information about nearby businesses [6]. Related to

this use is interactive map consultation as performed on mobile phones [7]. Others include

location-sensitive billing, for instance to provide billing rates for wireless access depend-

ing on whether the wireless terminal is used at home, in the office, or on the road [8].

Another is monitoring various at risk populations such as the mentally impaired [9], young

children or parolees [10]. Location information could also be used for intelligent trans-

portation systems and to enhance cellular network performance [11]. Currently, a number

of commercial efforts are underway to exploit knowledge of a user’s location for marketing

purposes [10], [12].

2

B. RELATED WORK

A time difference-of-arrival (TDOA) method developed in [13] incorporates a set of

parameters that account for the index of refraction in the line-of-sight from the transmitter

to each observing receiver. The use of a single, common value for the index of refraction

is proposed in this thesis.

A time-of-arrival (TOA) method for two-dimensional geolocation is presented in [14].

It uses the intersections of distinct circles to form linear constraints in the plane which may

be used to estimate the position. An extension of this method to three dimensional geolo-

cation is proposed in this thesis.

The method in [13] makes predetermined use of the information from five observ-

ing receivers. The algorithm in [14] suggests either using least-squares when extra con-

straints are available or computing a set of position estimates and applying some auxiliary

algorithm to reduce them to a single-point estimate. The choice of a “good” subset from

the total set of available constraint equations and then using the simplest version of the

estimator to form the estimate is proposed in this thesis.

Both [13] and [14] require range estimates (which may be noisy) but do not ex-

plicitly consider range estimates with systematic bias. The former merely used an index of

refraction-like parameter to account for additional delay due to channel characteristics [13].

Koorapaty, et al., consider biased range estimates but do not tie the degree of bias to a model

of physical effects [15]. Explicitly considering biased range estimates, where the bias is

tied to the mismatch between the estimated index of refraction of the medium and the true

index of refraction of the medium, is proposed in this thesis.

C. OBJECTIVES AND APPROACH

The objective of this thesis is to improve the performance of geolocation schema.

This is accomplished through estimating the speed of light, estimating target velocity, and

exercising receiver choice. A flowchart of the overall scheme is shown in Figure 1. Exoge-

nous inputs are denoted by parallelogram blocks. Rectangular blocks denote processes.

3

An estimate of the speed of light in the medium via inclusion of the Refractivity

Estimation block and all the blocks that form its inputs is incorporated in this thesis. The

proposed method for estimating target velocity is incorporated through the Target Velocity

Estimation block. Finally, the proposed scheme for exploiting receiver choice is embodied

in the Receiver Choice block. The Monte Carlo simulation undertaken to assess the effects

of receiver choice on the performance of the various estimator is embodied in the User

Application block.

D. ORGANIZATION

Background material, including existing theoretical work, is presented in Chap-

ter II. This includes a discussion of the theory of circular and hyperbolic multilateration,

the Doppler effect, the speed of light in an arbitrary medium, and those portions of the

IEEE 802.16 specification necessary for the remainder of this thesis.

The biases that arise directly from assuming an incorrect value of the refractivity

of the atmosphere are developed in Chapter III. There are three such biases. These are a

propagation velocity bias, a range estimate bias, and a velocity estimate bias.

Methods for exploiting constraint choice in the contexts of TOA, TDOA, and Doppler

velocity estimation (DVE) are presented in Chapter IV. After introducing some terminol-

ogy, a general constraint choice algorithm is suggested based on simple linear algebra con-

siderations. After this are discussions of how to apply this algorithm to the specific cases of

TOA, TDOA and DVE. In the case of the TDOA problem, a modified estimator is derived

to facilitate implementation of the technique.

The simulation study undertaken to prove the concepts developed in the preceding

chapters is presented in Chapter V. The MATLAB package developed to facilitate simula-

tion is documented at a high level. After this are sections in which the details of the various

scenarios and results are presented.Finally, there is a discussion of the results.

The thesis is concluded in Chapter VI. A summary of the major work and sugges-

tions for future work are presented.

4

Partial Pressure

of Dry Air

+
-

Target

Position

Estimation

Target

Velocity

Estimation

User Application

Receiver

Selection

Atmospheric

Pressure
Dew Point

Ambient

Temperature

Carbon

Dioxide

Target

Timing

Adjust

Target

Frequency

Shift

Partial Pressure of Water

Refractivity Estimation

Figure 1. Flowchart of the overall geolocation estimation process including refractivity
estimation and receiver choice.

5

There are three appendices to this thesis. A brief introduction to the Unified Model-

ing Language conventions used in this thesis to describe the MATLAB software developed

as part of the work is presented in Appendix A. All of the MATLAB code which imple-

ments the various pieces of the software model is contained in Appendix B. Examples of the

scripts used to conduct the simulations and generate the plots of the results are contained

in Appendix C.

6

II. THEORY AND BACKGROUND

Presented in this chapter are the requisite theory and background information to

support the remainder of this thesis. The related literature is presented in Section A. The

theory behind geolocation of an emitter of interest using range information is presented in

Section B. In Section C, the theory of how to use frequency shift information to estimate

the velocity vector of an emitter is presented. Refractivity, refractive index, and the speed

of light are discussed in Section D. Methods to estimate the refractivity of air are discussed

in Section E. Finally, the relevant features of the IEEE 802.16 standard are presented in

Section F.

A. GEOLOCATION OF EMITTERS

The literature related to passive geolocation of emitters is extensive. Survey papers

aside, there are at least three major axes along which the literature may be classified. The

first is whether the propagation paths are line-of-sight (LOS) or not (NLOS). The second

relates to the information used to form estimates, be it propagation time, received fre-

quency, angle, or in some cases other information. The third is the method of solution.

Categories include least-squares, maximum-likelihood, constrained optimization, and geo-

metric [16], [17]. Within this constellation of combinations, LOS techniques using prop-

agation time are of the most immediate interest across the set of solutions of the resulting

equations.

Given the breath and depth of the geolocation literature, several works are of great

use as entry points. An excellent introduction to the relevant statistical theory of passive

geolocation of emitters may be found in [18]. Papers that survey methods of geolocation

applied to cell phones include [4], [6], [8], [19].

Propagation time based approaches dominate the literature. They may be further

subdivided into two sub-classes. First are those that use the time to propagate from the

7

emitter to each of a set of observers and is known as the time-of-arrival. The second are

those that use the difference in time-of-arrival of a signal at pairs of different observers or

the time difference-of-arrival. Each is discussed in the following.

Time-of-arrival approaches are also known as circular approaches because esti-

mates are formed using the intersection of circles centered at each observer. One simple

geometric approach uses pairs of overlapping circles to form lines of position, the intersec-

tion of which is taken to be the estimated emitter position [14]. This technique is applied

in [16] to timing adjust (TA) information employed in synchronizing handset transmissions

with the base station. In the case of unsynchronized transmitters and receivers, an approach

to both localization and tracking is provided in [20].

Time difference-of-arrival approaches are also known as hyperbolic approaches be-

cause estimates are formed from the intersection of hyperbola with foci at the location of

each of the two observers. The dual problem, that of navigation, is formulated and solved

in [21]. A divide and conquer approach to solving the TDOA equations is presented in

[22], but this approach is now somewhat dated. The case of fixed terrestrial transmitters

and observers is studied in [23]. Satellites observing terrestrial emitters is studied in [24]

and [25]. A generalized version incorporating both moving emitters and receivers is for-

mulated in [26]. These papers contrast with [17] where the emitter is assumed to be in the

far-field and employs linear approximations to the asymptotes of the hyperbolic curves to

form position estimates or when in the near-field to seed other techniques. It is also possi-

ble to cast the problem as one of constrained optimization by considering an additional set

of geometric constraints [27].

A few papers have explored the comparative merits of TOA versus TDOA or alter-

natively attempted to address bias problems caused by a variety of factors. The accuracy

of TOA versus TDOA is studied in [28], which finds that circular techniques perform as

well or better than hyperbolic techniques. While most papers consider the problem of noisy

measurements to some degree, a systematic attempt to consider biased measurement infor-

mation is undertaken in [15] using biases up to 200 m over ten km. A single paper has

8

attempted to directly address the issue of propagation delay in the channel [13]. While

using an idea similar to the index of refraction, a very general model is formulated in this

paper but does not explicitly consider refractivity.

A few papers that fall outside of the rubric of LOS TOA or TDOA deserve men-

tion. First are two papers that consider the use of frequency to form geolocation esti-

mates [25, 26]. These papers conclude that while frequency information is a possible

alternative, it adds significant computational complexity. Another frequency approach is

that of differential Doppler [29]. A third family of geolocation approaches uses received

signal strength, to which [30] serves as a useful starting point. The challenges of NLOS

environments are discussed in [31], [32], [33].

B. GEOLOCATION USING RANGE ESTIMATES

As discussed in Chapter I, there is a continuing interest in using information about

the location of a mobile device to provide a variety of services. Given a set of observations

of the time required for a transmitted radio signal to propagate from the source to each of

a set of receivers (RCVR), the task becomes to use this information to construct a position

estimate in three spatial dimensions.

1. Spatial Model

The spatial model presented in this section is based on ranges from a set of ob-

serving receivers. Developed for scenarios in three dimensions, it follows a number of

references: [2], [17], [14], [21], [23], [24], [25]. The model used in this chapter is shown

in Figure 2.

Distance is related to propagation time via

ri =
c

n
ti (1)

where ri is the distance in meters from the transmitter to the i-th receiver, c is the speed of

light in vacuum in meters per second, n is the refractive index, and ti is the propagation

9

RCVR 1

RCVR 2

RCVR 3

r2

r1

r3

Figure 2. Spatial model of mobile subscriber position as the intersection of three range
circles.

time in seconds to the i-th receiver. The refractive index is unit-free and accounts for the

difference between the speed of light in air and vacuum.

It is necessary to assume the reference clocks are synchronized. The standard rec-

ommends synchronization to a common time reference signal; e.g., as provided by a Global

Positioning System (GPS) receiver [1, 8.4.10.1.1].

2. Time of Arrival Algorithms

Time-of-arrival algorithms are also known as circular multilateration algorithms.

This is because they act on the basis of intersecting circles with radii derived from the

propagation time of a signal from the transmitter to a set of observing receivers. In the

context of an IEEE 802.16 network, the transmitter may be taken to be a MS and each

receiver to be a BS. The number of these towers is a function of the number of dimensions

in which localization is desired.

An extension of the algorithm given in [14] may be derived in a straightforward

manner. Begin by denoting the position of the transmitter of interest as p0 and the posi-

tions of the various receivers as pi where i ∈ N. Assuming that the receivers are time-

synchronized, we see that two equivalent formulations are possible. One further assumes

that the time-of-arrival of a signal from the transmitter at each receiver is measured and the

10

time of transmission is known. The other assumes that a measurement of the propagation

time ti from the transmitter to receiver i is known for each i. This work takes the second

framework. Then we can write a set of circular constraints with the form

|pi − p0| = vpti = ri (2)

where vp is the local propagation velocity in the medium and | · | indicates the absolute

value of a scalar or the norm of a vector as appropriate. In three dimensions, the constraints

described by (2) are spherical. Intersecting a pair of such spherical constraints gives a

circular constraint in three dimensions. This circle is centered at point pij with radius rij

where i and j are the indices of the receivers involved. Denote the distance between the

center of the constraint circle and receivers i and j as di = |pij − pi| and dj = |pij − pj|,

respectively. Invoking the Pythagorean theorem, we get the relationship

r2i − d
2
i = r

2
j − d

2
j . (3)

As pij lies on a line through pi and pj, then

pij = pi ± di
pj − pi
|pj − pi|

. (4)

The ± in (4) is because di > 0.

The simplest way to solve for the intersections of the two spheres is by considering

three cases. Without loss of generality, suppose that the line connecting pi and pj is ori-

ented such that pi is to the left of pj. Then the three cases are that pij is to the left of pi,

between pi and pj, and to the right of pj. It will be shown that these three can be reduced

to the first two cases. These cases are depicted in Figures 3, 4, and 5, respectively.

In the first case, rewrite (3) as

r2i − d
2
i = r

2
j − (di + |pj − pi|)

2
. (5)

11

pij pi pj

p0

Figure 3. The case of pij to the left of pi.

pijpi pj

p0

Figure 4. The case of pij in between pi and pj .

pijpi pj

p0

Figure 5. The case of pij to the right of pi and pj .

12

Expand the right hand side to obtain

r2i − d
2
i = r

2
j − d

2
i − 2di|pj − pi|− |pj − pi|

2. (6)

Finally, solve for di to produce the relationship

di =
r2i − r

2
j + |pj − pi|

2

−2|pj − pi|
. (7)

In this case, the position of pij is given by

pij = pi − di
pj − pi
|pj − pi|

. (8)

In the second case, rewrite (3) as

r2i − d
2
i = r

2
j − (|pj − pi|− di)

2
. (9)

Expand the right hand side to obtain

r2i − d
2
i = r

2
j − d

2
i + 2di|pj − pi|− |pj − pi|

2. (10)

Finally, solve for di to produce the relationship

di =
r2i − r

2
j + |pj − pi|

2

2|pj − pi|
. (11)

In this case, the position of pij is given by

pij = pi + di
pj − pi
|pj − pi|

. (12)

In the third case, rewrite (3) as

r2i − d
2
i = r

2
j − (di − |pj − pi|)

2
. (13)

13

This is facially equivalent to the second case.

These three circumstances are summarized Table 1. These three cases may be uni-

fied by defining a new variable d such that

d =

−di Case 1

di Case 2, 3.
(14)

This allows (4) to be simplified to

pij = pi + d
pj − pi
|pj − pi|

. (15)

Table 1. Summary of the TOA solutions.

Case di pij

1
r2i−r

2
j+|pj−pi|

2

−2|pj−pi|
pi − di

pj−pi
|pj−pi|

2
r2i−r

2
j+|pj−pi|

2

2|pj−pi|
pi + di

pj−pi
|pj−pi|

3
r2i−r

2
j+|pj−pi|

2

2|pj−pi|
pi + di

pj−pi
|pj−pi|

It is now possible in three dimensions to use four towers to form three circular

constraints and, using these constraints, form three planar constraints, which may then be

solved. This derivation will rely on the fact that an arbitrary plane in R3 may be described

by

~n>(x− x0) = 0 (16)

where ~n is any vector normal to the plane, x is the position of any point in the plane

expressed as a column vector, and x0 is the position of an arbitrary reference point in

the plane expressed as a column vector. Let three non-co-planer circular constraints be

formed from four towers using the method described above. Further, let their centers be

located without loss of generality at ψi such that i = 1, 2, 3 and their radii be ρi such that

14

i = 1, 2, 3. Then these three circles may be written as

|p0 −ψ1| = ρ1 (17)

|p0 −ψ2| = ρ2 (18)

|p0 −ψ3| = ρ3. (19)

As the circles described by (17) through (19) are in R3, their respective orientation

vectors may be taken to the the unit vector normal to the plane in which the circle lies.

Recalling (16), we choose

~nij =
pj − pi
|pj − pi|

. (20)

Next, recognizing the intersection of the three constraint circles lies in the three planes,

the problem of solving for the intersection of three circles is now reducible to solving the

intersection of three planes with the form

~n>ij(x− pij) = 0. (21)

Congruent to the convention of using ψi to represent the center of a circle, let ~ni be the

corresponding normal vector. Ergo, the final set of linear equations to solve has the form

~n>1 p0 = ~n>1ψ1 (22)

~n>2 p0 = ~n>2ψ2 (23)

~n>3 p0 = ~n>3ψ3. (24)

There are two special cases which lead to degeneracy. The first is the case of three

co-linear towers. In this case, any two pairs will form the same circular constraint. This

is clear from considering the geometry of the single circle case in that the transmitter is

always a fixed radius from the line connecting two receivers regardless of how far those

receivers may be from the target or each other; therefore, the circular constraint is the same

15

both in radius, center, and orientation. The second case is of four co-planar receivers. In

this case, taking any three planar constraints, it may be seen that the normal vector to the

plane of the observing towers is parallel to every line in any plane. This is equivalent to the

three planes being linearly dependent.

3. Time Difference of Arrival Algorithms

Time difference-of-arrival methods proceed from using the observed reception time

at pairs of time-synchronized receivers to form a set of hyperbolic constraints in R3, which,

when intersected, yield a position estimate. This approach has the advantage of not requir-

ing knowledge of the time of transmission of the received signal [13]. These hyperbola

are defined by the difference in the distance from a transmitter to each of two distinct ob-

serving receivers. Like TOA algorithms, the number of receivers required is a function of

the number of dimensions in which localization is desired. An example of data from three

receivers forming two hyperbola is shown in Figure 6. The hyperbola curves toward the

receiver to which the transmitter is closer.

RCVR 1

RCVR 2 RCVR 3

Figure 6. An example of range differences from three receivers forming two hyperbola,
the intersection of which is the estimated position of the transmitter.

16

The base scheme used in this work is due to Bakhoum [13]. It is attractive because

it reduces the problem of hyperbolic estimation to solving a matrix equation with the form

Ap0 = b (25)

where the i-th row of A is given by

Ai =
2

t2 − t1

(
~p>2
α22

−
~p>1
α21

)
−

2

ti+2 − t1

(
~p>i+2
α2i+2

−
~p>1
α21

)
(26)

and the corresponding element of b by

bi =
1

t2 − t1

(
|~p2|

2

α22
−

| ~p1|
2

α21

)
−

1

ti+2 − t1

(
|~pi+2|

2

α2i+2
−

| ~p1|
2

α21

)
+ c2(ti+2 − t2). (27)

The time-of-arrival of the signal at BS i is ti, the position of BS i is ~pi, and the reciprocal

of the refractive index along the line-of-sight between the emitter and the BS is αi.

One important consideration for this scheme is that it will fail whenever there is

no difference in the time-of-arrival of a signal at two different BS. This results in division

by zero and a consequent failure to produce a meaningful position estimate. If the time

measurements are sufficiently precise, then it becomes almost impossible for such a condi-

tion to occur. As will be discussed in more detail in Section F, time measurements in the

context of an IEEE 802.16 network do not have the level of precision required to preclude

the possibility of division by zero. One method for addressing this problem is presented in

Chapter IV.

C. VELOCITY ESTIMATION FROM FREQUENCY INFORMATION

In addition to estimating the location information using techniques presented in

Section B, it is also possible to estimate the motion of the MS using the Doppler Equation

and the observed frequency shift at a set of BS. The Doppler equation and the spatial model

17

of mobile device motion are introduced in Section 1. A method for using the Doppler

equation to solve for the velocity of the MS is presented in Section 2.

1. Spatial Model and the Doppler Equation

The Doppler equation relates relative motion of a transmitter with respect to a re-

ceiver to the ratio of the received and transmitted frequencies. When the relative motion

between the transmitter and the receiver is small relative to the propagation velocity, as is

the case here, the received frequency f is related to the original frequency f0 as

f = fo(1− β) (28)

where β = v/c and v is the radial speed assuming the transmitter and receiver are moving

apart from each other [34, Eq. 37-33, p. 1040]. It is convenient for the purposes of

this work to re-express the Doppler relationship between receiver i and the transmitter of

interest as

fi = ft

(
1−

vi

vp

)
(29)

where fi is the frequency received at receiver i, f0 is replaced with the transmitted center

frequency ft, vi is the signed relative motion in the line-of-sight between the transmitter

and the receiver in meters per second, and vp is the velocity of signal propagation in the

medium in meters per second. Note that the sign convention is that positive vi indicates the

transmitter is opening the receiver in range resulting in the expected decrease in observed

frequency.

In the context of cellular networks, the only unknowns in (29) are vi and vp. The

former is discussed below. The latter may be estimated from physical considerations. In

this section, it is assumed that a reasonable estimate exists, and we will take up the question

of how to create such an estimate in Section D.

In order to apply the Doppler equation to the problem at hand, it is necessary to

have a spatial model of the motion of the mobile device. This is done with the use of

18

Hamiltonian notation to develop a single equation and then is shifted to matrix notation in

the final solution.

We first define the new notations used in the model. Let ~O be the arbitrary origin

of the system with components measured in meters. Let ~v(t) be the transmitter’s velocity

as a function of time with components measured in meters per second. This is denoted by

~v where confusion will not result. Finally, let

~n =
p0 − pi
|p0 − pi|

(30)

be a unit-less unit vector in the direction of p0 relative to receiver pi. The vector ~n is

pointed away from pi to conform with the convention above that positive relative motion

between the transmitter and receiver indicates opening in range. It follows immediately

that, at any time t, the relative motion in the line of sight ~vi between the transmitter and

receiver is given by the inner product of ~n and ~v

~vi =
(p0 − pi) ·~v
|p0 − pi|

. (31)

This situation is shown in Figure 7. The vector ~n has been drawn in bold over ~vi, and both

vectors begin at the same location.

2. Doppler Velocity Estimation with a Known Transmitted Frequency

With the information developed above, it is now possible to derive an estimator for

the motion of the transmitter. This estimator is derived below in two steps. First, (29) and

(31) for two receivers are used to form a linear relationship between observed frequencies

fi and fj (i 6= j) and ~v as given in (33). Second, an estimate of ~v is created by rewriting

the aforementioned equation for multiple independent receiver pairs in matrix form and

solving for ~v.

19

RCVR i

~v

~vi

~n

p0

pi

|p0 − pi|

~O

Figure 7. Model of transmitter motion with a nominal velocity vector indicating the
transmitter is moving away from the receiver.

Substituting (31) into (29), we get

fi = ft

(
1−

(p0−pi)·~v
|p0−pi|

vp

)

= ft

(
1−

(p0 − pi) ·~v
vp|p0 − pi|

)
= ft

(
1−

(p0 − pi) ·~v
tiv2p

)
. (32)

The last step follows from recalling |p0 − pi| = tivp where ti may be taken to be the

timing adjust value associated with receiver i. In general, ti may be any estimate of the

propagation time of a transmission from the transmitter to the i-th receiver.

20

Next, assuming available data for four receiving base stations, we form the fre-

quency difference relative to pi by taking fj,i = fj − fi, i = 1, 2, 3 for the three-

dimensional case. This yields

fj,i = fj − fi

= ft

(
1−

(p0 − pj) ·~v
tjv2p

)
− ft

(
1−

(p0 − pi) ·~v
tiv2p

)
= ft

(
1−

(p0 − pj) ·~v
tjv2p

− 1+
(p0 − pi) ·~v

tiv2p

)
= ft

(
pj ·~v
tjv2p

−
pi ·~v
tiv2p

)
=
ft

v2p

(
pj

tj
−
pi

ti

)
·~v (33)

Note that the values for fj and fi must correspond in time.

Next, without loss of generality, let i = 1 and j = 2, 3, 4 in (33) to form

f2,1 =
ft

v2p

(
p2

t2
−
p1

t1

)
·~v (34a)

f3,1 =
ft

v2p

(
p3

t3
−
p1

t1

)
·~v (34b)

f4,1 =
ft

v2p

(
p4

t4
−
p1

t1

)
·~v. (34c)

This is the minimum case to generate a unique estimate of ~v assuming motion in three

dimensions. In the event the system is under-determined, additional knowledge must be

brought to bear in forming a reasonable estimate. In the event that there are more than four

receivers available, then the system is over-determined, and techniques such as weighted

least squares may be applied.

Rewriting the left hand side of (34a) through (34c) as a column vector fji, ~v as the

column vector v and pj/tj − p1/t1 as a three by three matrix Rj,i, we get the simplified

21

relationship

fj,i =
ft

v2p
Rj,iv. (35)

Assuming that Rj,i is invertable, we get the estimate of v as

v =
v2pR−1

j,i fj,i
ft

. (36)

This assumption is reasonable from the construction of Rj,i so long no as two receivers are

co-linear with respect to the reference station.

D. REFRACTIVE INDEX AND REFRACTIVITY

The refractive index of air refers to the degree to which light is slowed by traveling

through the atmosphere relative to traveling through vacuum [35]. This relationship is

given mathematically as

cn =
c

n
(37)

where n is the refractive index, and cn is the speed of light in the medium [34, Eq. 35-3,

p. 960].

This thesis follows the geodesy literature by discussing the refractivity of light in a

given medium. Refractivity N is related to refractive index as

N = 106(n− 1) (38)

expressed in parts per million (ppm) [36]. Ergo, while the refractive index expresses the

true relationship between the the speed of light in vacuum and the speed of light in a given

medium, the refractivity is a shorthand convention which is more convenient given the

range of values in use (less than 1000 ppm).

22

E. ESTIMATING THE REFRACTIVITY OF AIR

The refractivity of the atmosphere is driven by local atmospheric conditions, most

notably partial pressure of dry air, partial pressure of water, temperature, and carbon diox-

ide content [36]. The partial pressure of dry air is that part of total atmospheric pressure due

to air alone (no water vapor). Partial pressure of water is that part due to the water vapor

in the air and depends on the dew or frost point and overall atmospheric pressure [37]. The

equation used to estimate refractivity is discussed first followed by a discussion of how to

obtain the required partial pressure values from common meteorological data. The overall

estimation process is shown in Figure 8.

Partial Pressure

of Dry Air

+
-

Atmospheric

Pressure
Dew Point

Ambient

Temperature

Carbon

Dioxide

Partial Pressure of Water

Refractivity Estimation

Figure 8. Flowchart of the process of estimating local refractivity from atmospheric
conditions.

1. Empirical Formulae for Refractivity Estimation

The literature concerning the refractive index of air (also known as the refractivity

of air) dates to at least 1933 [38]. Pencil and paper formulae provide good approximate

values of atmospheric refractivity so long as the frequency of interest avoids certain critical

23

values near 22, 60, and 120 GHz [36], [35]. It is assumed herein that the network operates

below 11 GHz, thereby, entirely avoiding these problems.

Modern literature on modeling the refractivity of the Earth’s atmosphere dates to

the 1950s [36], [38]. During this time, the Effective Earth Radius model, also known as

the “4/3 Earth Model,” was supplanted by a model of long term refractivity, which incorpo-

rated ambient temperature, total atmospheric pressure, and water vapor pressure [36], [38], [39].

In the 1950s and into the 1960s, much of the data used for estimation of physical constants

was taken from radiosonde observations [38], [39]. Between 1960 and 1963, the Interna-

tional Union of Geodesy and Geophysics settled on a standard model [36]. Various attempts

to improve on these formulae and their use have been made in the intervening years, and

the set of parameters has been expanded to explicitly include atmospheric carbon dioxide

concentration [36], [40], [41]. In the context of GPS, using per observation refractivity ad-

justments has been shown to be significantly more effective and accurate than using daily

average corrections. In the context of surveying using very long baseline interferometry,

the situation is more complicated, but corrections should still be applied for accurate mea-

surement [41].

Later work has refined the coefficients used in these models to reflect more re-

cent data collected in lab settings using refractometers [36], [40], [42]. Comparison of

the modern versions of these models indicates general agreement to within two ppm for

most temperature and humidity conditions [36]. With the aforementioned considerations

in mind, the “best average coefficients” formula for 375 ppm atmospheric carbon dioxide

given by [36]

N = 77.6890
Pd

T + 273.15
+ 71.2952

Pw

T + 273.15
+ 375463

Pw

(T + 273.15)2
(39)

is adopted for use in the model such that Pd is the partial pressure of dry air in millibar with

the specified amount of carbon dioxide, Pw is the partial pressure of water vapor in millibar,

and T is the temperature in Celsius. A plot of refractivity as a function of temperature and

dew-point spread is shown in Figure 9. One thousand millibar total atmospheric pressure

24

is one standard atmosphere of pressure. While (39) is cast in terms of temperature and two

partial pressures, it is possible to compute the partial pressures required from temperature

and dew-point using equations discussed in Section E.2. Under most conditions (those in

the lower right quadrant) refractivity increases with increasing temperature and decreased

dew-point spreads. The warmest and wettest parts of the atmosphere have the highest

refractivity values, while cold, dry areas have lower refractivity values. The discontinuity

at zero Celsius is due to a discontinuity in the underlying formula for the partial pressure

of water.

305

310

310

3
1
5

315

31
5

3
2
0

320
320

32
0

3
2
5

3
2
5

325

32
5

3
3
0

3
3
0 330

33
0

33
0

3
3
5

3
3
5

335

33
5

33
5

33
5

3
4
0

340

34
0

34
0

34
0

35
0

35
0

35
0

36
0

36
0

36
0

37
0

37
0

37
0

38
0

38
0

38
0

40
0

40
0

42
0

42
0

44
0

44
0

46
0

46
0

48
0

48
0

50
0

55
0

60
0

65
0

Temperature (C)

D
e

w
p

o
in

t
S

p
re

a
d

 (
C

)

−20 −10 0 10 20 30 40 50
0

5

10

15

20

25

30

Figure 9. Refractivity of the atmosphere as a function of temperature and dew-point
spread at 1000 millibar total atmospheric pressure.

A region may also undergo significant changes in refractivity due to daily and sea-

sonal changes. One example is documented in [43]. Data taken for Akure, Southwestern

Nigeria show daily average swings of 30 ppm during the winter months and an average of

a 50 ppm difference in refractivity between summer and winter.

25

2. Partial Pressure of Dry Air and Water Vapor

In practice, it is reasonable to obtain local ambient temperature, total atmospheric

pressure P, and dew- or frost-point (Td and Tf, respectively) from meteorologists. All

temperatures are measured in Celsius, and all pressures are measured in millibars. Using

the equations and tables given in [37], we can to estimate the partial pressure of water vapor

as

Pw =

e(Td)f(Td, P) T ∈ (0, 100]

e(Tf)f(Tf, P) T ∈ [−50, 0]

(40)

where e(T) is the partial pressure of water vapor and f(T, P) is an enhancement factor to

account for behavioral differences between moist air and pure water vapor, given temper-

ature and pressure. Several families of e(T) curves that have been optimized for various

temperature ranges and have associated optimal f(T, P) curves are presented in [37]. The

curves adopted for use in this thesis were chosen from Table 2 of [37] for a combination of

their accuracy over the specified range of values and their relative simplicity. The partial

pressure of water vapor curve adopted from [37] is given by

e(T) =

6.1121 exp
{

(18.564−T/254.4)T
T+255.57

}
T ∈ (0, 100]

6.1115 exp
{
22.452T
T+272.55

}
T ∈ [−50, 0].

(41)

The associated enhancement factor adopted from [37] is

f(T, P) =

1+ 7.2× 10
−4 + P[3.2× 10−6 + 5.9× 10−10T2] T ∈ (0, 100]

1+ 3× 10−4 + 4.18× 10−6P T ∈ [−50, 0].

(42)

Finally, the partial pressure of dry air Pd = P − Pw [36]. The partial pressure of water in

the atmosphere as a function of temperature and dew-point spread is shown in Figure 10;

total pressure is assumed to be 1000 millibar (approximately one standard atmosphere [35,

Eq. 6.9]). The partial pressure of water in the atmosphere increases with temperature and

26

dew-point (reduction in dew-point spread). The discontinuity at zero Celsius is due to the

coefficients for the two regions having been fit separately without the requirement that the

curves join at that point.

0.
1

0.
1

1

1

1

2

2

2

4

4

4

6

6

6

8

8

8

10

10

10

15

15

15

20

20

20

25

25

25

30

30

45

45
60

75
90

Temperature (C)

D
e

w
p

o
in

t
S

p
re

a
d

 (
C

)

−20 −10 0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Figure 10. Partial pressure of water at 1000 millibars total pressure as a function of
temperature and dew-point spread.

F. IEEE 802.16

1. OFDMA Waveform

The orthogonal frequency-division multiple access (OFDMA) physical layer (PHY)

specification is an extension of the orthogonal frequency-division multiplex (OFDM) PHY.

This extension supports scalability, multiple access, and advanced antenna array processing

through division of each symbol into logical subchannels [1, 8.4.2.2]. Subchannels are

comprised of groups of OFDM subcarriers. Subcarriers need not be adjacent in frequency.

Each logical block is then independently assigned by the BS. During downlink, each MS

is assigned a subchannel containing data addressed to it. Likewise, in uplink each MS is

assigned a subchannel on which to transmit information to the BS.

27

An example of subcarriers assigned to various subchannels is shown in Figure 11.

In this example, subcarriers assigned to each subchannel are nonadjacent. While this ex-

ample shows only three subchannels, up to sixty are possible [1, Table 315].

Figure 11. An OFDMA symbol in the frequency domain (three channel schematic
example). From [1, Fig. 218].

An example of how an OFDMA frame might be subdivided in time-division du-

plexing mode is shown in Figure 12. The frame begins with a preamble. There is a frame

Figure 12. Example of an OFDMA frame (with only mandatory zone) in TDD mode.
From [1, Fig. 222].

control header, a downlink map (DL-MAP), an uplink map (UL-MAP), and bursts allocated

to each MS.

28

2. Network Specification

IEEE 802.16 OFMDA networks can be characterized into equivalence classes on

any subset of four primitive parameters. The four primitive parameters are listed in Ta-

ble 2 [1, 8.4.2.3]. These four primitive parameters are then used to derive additional pa-

Table 2. Primitive IEEE 802.16 OFDMA network parameters.

Parameter Definition
Nominal channel bandwidth W

Number of used subchannels Nused

Sampling factor n =

8/7 W mod 1.75MHz = 0

28/25 W mod XMHz = 0,

X ∈ {1.25, 1.5, 2, 2.75}

8/7 otherwise
Ratio of cyclic prefix time to useful time G ∈ {1/32, 1/16, 1/8, 1/4}

rameters pursuant to the definitions given in chapter 8.4.2.4 of [1], as shown in Table 3.

Table 3. Derived IEEE 802.16 OFDMA network parameters.

Parameter Definition
Nfft Smallest power of two greater than Nused
Sampling Frequency Fs = 8000bn ·W/8000c
Subcarrier spacing ∆f = Fs/Nfft
Bit Time Tb = 1/∆f
Cyclic Prefix Time Tg = GTb
OFDMA Symbol Time Ts = Tb + Tg
Sampling Time Tb/Nfft

3. Synchronization and Ranging

Ranging is defined as a collection of steps by which the quality of the radio fre-

quency link between the subscriber station and BS is maintained [1, 6.3.10]. The ranging

process encompasses a variety of parameters, two dedicated message structures, and three

procedures. The process of ranging when using the OFDMA physical layer specification is

defined in chapter 6.3.10.3 of [1].

29

Under the OFDMA physical layer specification, ranging for time and power occurs

on a periodic basis, during (re)registration, and when synchronization is lost [1, 8.4.10.2].

Frequency adjustments are also transmitted by the BS to the MS as part of the ranging

messages as necessary [1, 8.4.15.1]. Periodic ranging opportunities are controlled by the

MS and must occur at least every 35 seconds [1, 6.3.10.3.2, Table 554].

The complete set of parameters and values which must or may be present in a Range

Response (RNG RSP) message are given in 6.3.2.3.6 in [1]. Of these, two are of interest.

These are the Timing Adjust Information and the Frequency Adjust Information.

4. Extracting Time and Frequency Information

Extracting time and frequency information from the RNG RSP message requires

knowledge of both the field format specification and the associated units. This information

is given in Table 585 of [1]. The timing adjust field is a signed 32-bit integer number of

timing adjust units. A timing adjust unit is computed in seconds using the relationship

given in 10.3.4.3 of [1]

τ =
1

Fs
=

(
8000

⌊
nW

8000

⌋)−1

(43)

where the equation for the sampling frequency is given in Table 3. The frequency adjust

field is a signed 32-bit integer with units of Hz [1, Table 585].

Conversion of timing adjust units to a range estimate is through the relationship

r = vpτTa (44)

where Ta is an integer number of timing adjust units.

Relevant background material was presented in this section. A summary of the ge-

olocation literature was presented. Three geolocation methods, TOA, TDOA, and DVE,

were introduced. For the TOA and DVE methods, the presentation included a derivation

of the estimator. Refractivity of the atmosphere was shown to be estimable from com-

monly available atmospheric quantities using formulas found in the literature. It was shown

30

that the necessary inputs to the various estimators may be extracted from IEEE 802.16

RNG RSP packets.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

III. BIASES ARISING FROM REFRACTIVITY MISMATCH

Using an incorrect value for local atmospheric refractivity introduces three directly

quantifiable biases. These are propagation velocity bias, range bias, and target velocity bias.

Closed form equations for each are given below. Propagation velocity bias is presented in

Section A. Range estimate bias is presented in Section B. Target velocity bias is presented

in Section C.

A. PROPAGATION VELOCITY BIAS

An incorrect choice of assumed local refractivity biases the estimated propagation

velocity of the medium. Letting n0 be the true value of the refractive index of the medium

and n̂ be the estimate, we can rewrite (37) as

cn̂ =
c

n̂
+
c

n0
−
c

n0
=
c

n0
+
n0 − n̂

n0n̂
c. (45)

In this formulation, the bias is given by the right-most term

bc(n0, n̂) =
n0 − n̂

n0n̂
c. (46)

This bias term is the amount by which the the estimated propagation velocity is too high

(positive sign) or too low (negative sign).

B. RANGE ESTIMATE BIAS

A refractive bias arises in range estimates when the estimated refractivity is differ-

ent from the true refractivity. Given propagation time to the ith base station, the distance

estimate to the same base station is given by

ri =
c

n0
ti +

n0 − n̂

n̂n0
cti. (47)

33

By inspection, it is clear that when n̂ = n0, ri is unbiased; otherwise, bias due to refrac-

tivity mismatch is

bd(n0, n̂) =
n0 − n̂

n̂n0
cti. (48)

Adjusting for bias is now as simple as using an estimate of refractivity obtained via methods

presented in Section II.E. Range bias as a function of propagation time and refractivity for

various values of refractivity is depicted in Figure 13. The figure is read by selecting the

propagation time on the horizontal axis, tracing up to the appropriate refractivity line, and

reading the range bias off of the vertical axis. The range bias associated with refractivity

mismatch, given propagation time, may be read as the vertical difference in range bias

between two curves.

10 20 30 40 50

−10

−8

−6

−4

−2

0

2

4

6

8

Propogation Time(µs)

R
a

n
g

e
 B

ia
s
 (

m
)

N = −692

N = 0

N = 100

N = 200

N = 300

N = 400

N = 500

N = 600

Figure 13. Range bias as a function of propagation time given refractivity and using the
true value of the speed of light.

The range bias in meters per ten microseconds of propagation time under three dif-

ferent total atmospheric pressure scenarios as a function of both ambient temperature and

dew-point spread is shown in Figures 14 through 16. Note that dew-point temperature is

ambient temperature minus the dew-point spread. We can clearly see from these plots that

34

both dry areas (high dew-point spread) and cold areas have less impact on range estimates

than wet areas (low dew-point spread) and high temperatures. Likewise, under all temper-

ature and dew-point spread conditions, higher total pressure conditions have more impact

than lower total pressure conditions.

0
.7

0.7

0
.7

5

0.75

0.75

0.75

0.8

0.8

0.8

0.85

0.85

0.9

0.9

1

1

1.1

1.1

1.2

1.3
5

1.5

1.7

Temperature (C)

D
e

w
p

o
in

t
S

p
re

a
d

 (
C

)

−20 −10 0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Figure 14. Range bias per 10µ seconds of propagation time at 850 millibar total
atmospheric pressure and using the true value of the speed of light.

Another way to view the range bias is to normalize it by some other quantity of

interest. One such quantity is the standard deviation of the range estimate error σ{ετ} =

cτ/
√
12, where ετ is a uniform random variable over the interval [0, cτ]. The ratio of the

range bias per ten microseconds normalized by σ{ετ} is

f(n0, n̂, τ) =
bd

σ{ετ}
=
10µ
√
12

τ

n̂− n0
n̂

. (49)

When this ratio is small, the range bias is overwhelmed by the error associated with using

timing adjust units to measure distance. Likewise, when the ratio is larger, it suggests a

performance gain may be obtained by incorporating refractivity explicitly. It is notable

that, had the timing adjust unit error structure been Gaussian instead of uniform, this would

35

0.8

0.8

0
.8

5

0.85

0.85

0
.9

0
.9

0.9

0.9

0.9

1

1

1

1.1

1.1

1.2

1.2

1.3
5

1.5

1.7
5

Temperature (C)

D
e

w
p

o
in

t
S

p
re

a
d

 (
C

)

−20 −10 0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Figure 15. Range bias per 10µ seconds of propagation time at 1000 millibar total
atmospheric pressure and using the true value of the speed of light.

0.9

0.90
.9

5

0.95

0.95

0.95

1

1

1

1

1

1.1

1.1

1.2

1.2

1.3
5

1.5

1.7
5

2

Temperature (C)

D
e

w
p

o
in

t
S

p
re

a
d

 (
C

)

−20 −10 0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Figure 16. Range bias per 10µ seconds of propagation time at 1100 millibar total
atmospheric pressure and using the true value of the speed of light.

36

be a Z-test of the hypothesis that the refractivity bias is different from zero in the presence

of timing noise. The logic of a hypothesis test still holds even if the critical values do

not. Further, the usual significance thresholds do not apply because the refractivity bias is

fed forward through the position or velocity estimator. Therefore, it is anticipated that a

much lower value than would otherwise be accepted as significant will result in meaningful

change in the final position or velocity estimate error structure.

A plot of bd/σ{ετ} for a range of timing adjust values in seconds is shown in

Figure 17. There are three vertical lines demarcating timing adjust units associated with

three different system bandwidths. A baseline refractivity of 350 ppm was chosen as a

proxy for a “normal” value of refractivity in the atmosphere. At relatively low system

bandwidths (below 10 MHz) there is little reason to believe refractivity makes a noticeable

difference regardless of the assumed refractivity. Even at relatively high system bandwidths

(50 MHz or more) there is a fairly large tolerable refractivity estimate error before the test

statistic might become large enough to cause concern.

−
2

−
2

−
1
.5

−
1
.5

−
1

−
1

−0.5

−0.5

−0.5

0 0 0 0

0.51

R
e

fr
a

c
ti
v
it
y
 (

p
p

m
)

Timing Advance Unit (ns)

10 20 30 40 50 60 70 80 90

−600

−400

−200

0

200

400

600

b
d
 / σ{ε

τ
}

W = 10 MHz

W = 25 MHz

W = 100 MHz

Figure 17. Range bias normalized by timing adjust unit-based range error standard
deviation.

37

C. TARGET VELOCITY BIAS

A method was presented in Chapter II.C for estimating true receiver velocity from

observed frequency shift. As in the case of distance estimates discussed in Section B, these

estimates are also impacted by failure to account for refractivity. An expression for this

bias is derived in this section.

To compute the bias due to refractivity mismatch, treat vp as the estimated propa-

gation velocity and substitute

vp =
c

n̂
+
c

n0
−
c

n0
(50)

into (36). This substitution yields

v =

(
c
n0

+ c(n0−n̂)
n̂n0

)2
R−1
j,i fj,i

ft
. (51)

Like (47), (51) is unbiased when n0 = n̂. Expand the squared term in (51) to obtain

v =

(
c2

n20
+ c2(n0−n̂)

2

n̂2n20
+ 2c

2(n0−n̂)

n20n̂

)
R−1
j,i fj,i

ft
. (52)

By inspection of (52), the velocity bias may now be expressed as

bv(n0, n̂) =

(
c2(n0−n̂)

2

n̂2n20
+ 2c

2(n0−n̂)

n20n̂

)
R−1
j,i fj,i

ft
. (53)

Noting (n0 − n̂)
2 is on the order of 10−8, we see that the first term of the bias is approx-

imately four orders of magnitude smaller than the second. Thus, a simplified estimate of

the velocity bias is given by

b̂v(n0, n̂) ≈ 2
c2(n0 − n̂)

ftn
2
0n̂

R−1
j,i fj,i. (54)

38

In summary, three directly characterizable biases arising from refractivity mismatch

were presented in this chapter. These are propagation velocity bias, range estimate bias,

and target velocity bias. Equations for each were presented. Propagation velocity bias

feeds forward into each of the other two biases. Range estimate bias is a function of local

atmospheric parameters. It may or may not be significant in relation to the timing noise

depending on the bandwidth of the system in question. Finally, it is possible to use a simple

estimate for target velocity error by recognizing a single component of the full estimator

will tend to dominate the result.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

IV. RECEIVER PAIR SELECTION

The methods presented in Chapter II each culminate in solving a matrix equa-

tion. As a result, performance of the algorithm is tied to this matrix equation being well-

conditioned. An algorithm for choosing a set of receivers which may be expected (but

not guaranteed) to be well conditioned in the context of either the the TOA, TDOA, or

DVE problem is presented in this chapter. This is done by application of graph theory and

elementary linear algebra.

An example of a situation in which tower choice is possible is shown in Figure 18.

In this example, a single transmitter is observed (lightning bolt) at seven geographically

1

2
3

4

5

6

7

Figure 18. An example of tower choice in which seven receivers are available of which
four or five are required.

dispersed receivers. As only three to five of these are needed (depending on the algorithm

employed) to construct an estimate, it is possible to choose from amoungst them the “best”

possible subset. For example, if a TDOA solution is desired, then towers 1, 2, 3, 4, 5 or

2, 4, 5, 6, 7 might be used.

This chapter is organized as follows. The shared terms and concepts are presented

in Section A. The application of these to the TOA problem are presented in Section B.

41

The application of the shared terms and concepts to the TDOA problem is presented in

Section C. Finally, the application to the DVE problem is presented in Section D.

A. TERMINOLOGY

The material which is common to formulating the methods presented in the later

sections of this chapter is presented in this section. First is a brief listing of the graph

theory terminology used herein. Second is a high level discussion of the proposed method

to select linear constraints from the overall set thereof.

1. Notation

A graph G is comprised of a set of vertexes V(G) and a set of edges E(G). These

are referred to as V and E where no confusion results. An edge connects two vertexes. The

order of a graph |V | is the number of vertexes and the size of a graph |E| is the number of

edges. Denote any vertex as vi ∈ V such that i = 1, 2, . . . , |V | and any edge as vivj ∈ E

such that i, j ∈ {i = 1, 2, . . . , |V |}. A subgraph ofG is any graphH such that V(H) ⊆ V(G)

and E(H) ⊆ E(G). All definitions are taken from [44].

With respect to the constraints, there is also a definition common to all three pro-

posed methods.

Definition A.1 (Admissable Constraint). A constraint is said to be admissible if and only

if there is not an a priori reason to exclude the constraint from any possible solution.

2. Choosing Linear Constraints

Suppose, in the problem at hand, it is possible to form a set of linear constraints

greater than the number necessary for solution. In the methods given in Chapter II, this

would mean being able to choose any three from some larger set of possible constraints.

These equations might then be arranged into the matrix equation

A
3×3
x = b

3×1
(55)

42

where x is the quantity of interest. For the system of equations to be well-conditioned,

the eigenvalues of the A matrix of (55) must have a sufficiently large minimum value.

Following [45], we let Vi be the vector which forms the row i of A. Consider

|A| = v1v2v3 cosφ sin θ (56)

where vi = |Vi|, θ is the angle between V2 and V3 and φ is the angle between V1 and

the normal to the plane of V2 and V3 [45, pg. 325]. While a comprehensive search for

the best possible set of constraint equations may be prohibitively expensive, a reasonable

approach is to first identify a set of independent constraints and then apply the fact given in

(56) to pick a set of three which either yield a large eigenvalue or are as reasonably close to

orthogonal as may be possible. This suggests the algorithm shown in Fig. 19. The former

approach is chosen in this thesis.

Require: A description of the set of possible linear constraints.
Ensure: Constraint matrix A eigenvalues are bounded from below in absolute value.

1: Compute all possible rows of A.
2: Select any acceptable row V3.
3: Select V2 maximizing |V3 × V2|.
4: Select V1 maximizing |V1 · (V3 × V2)|.

Figure 19. The proposed constraint selection algorithm.

B. APPLICATION TO CIRCULAR MULTILATERATION

A proposed method for using graph theory and the linear constraint choice algo-

rithm presented in Figure 19 to the problem of circular multilateration is presented in this

section. In this section, the proposed method is presented and the computational complex-

ity of this algorithm is derived.

43

1. Receiver Pair Choice Algorithm

In order to translate the TOA geolocation problem into graph theoretic terms, it is

necessary to identify the vertexes and edges of the graph. This model is referred to as the

TOA constraint graph.

Definition B.1 (TOA Constraint Graph). Given a set of receivers and a set of propagation

time measurements, the TOA constraint graph G is defined with a vertex set V(G) equal to

the set of admissible observers and an edge set E(G) whose members are the admissible

observer pairings where each pairing represents a circular constraint.

By convention, the TOA constraint graph do not contain as vertexes receivers that

did not receive the signal of interest or measure a negative propagation time. It is important

that observers with negligible propagation time be excluded because the circular constraint

is degenerate. Furthermore, it is assumed that none of the degenerate circumstances dis-

cussed in Chapter II are present.

It is now necessary to prove that sets of independent circular constraints are equiv-

alent to trees defined on the TOA constraint graph in Definition B.1.

Theorem B.1. Given a TOA constraint graph G, any connected subgraph H of G is a tree

if and only if the edge set of H represents a set of independent circular constraints.

Proof. (⇐)Proceed by proving the contra-positive. Suppose H is a subgraph of G, which

is not a tree. Then it must contain a cycle [44, pg. 83]. Any cycle, written as a sequence of

vertexes, has form

pα1 → pα2 → . . .→ pαn → pα1 (57)

where α is the ordered set of indices of the observers included in the cycle. Now invoke

Definition B.1 to write the set of edges represented in (57) as circular constraints in the

44

form of the intersection of two spheres

|p0 − pα2 |

rα2
−
|p0 − pα1 |

rα1
= 0 (58)

|p0 − pα3 |

rα3
−
|p0 − pα2 |

rα2
= 0 (59)

...

|p0 − pαn |

rαn
−
|p0 − pαn−1 |

rαn−1
= 0 (60)

|p0 − pα1 |

rα1
−
|p0 − pαn |

rαn
= 0. (61)

Adding (58) through (60), we get

|p0 − pαn |

rαn
−

|p0 − pα1 |

rα1
= 0. (62)

As (62) is equal to (61), the latter is dependent upon the remainder.

(⇒)Now suppose H is a tree. By the definition of the TOA constraint graph, each

edge represents a circular constraint. Let the edge set ofH be denoted by βwhose elements

are the un-ordered pairs of vertexes forming the respective edges. Denote the ith edge ofH

as βi where βi,j, j ∈ {1, 2} denotes one vertex of the pair. From the definition of the TOA

constraint graph, each βi is a circular constraint. As H is a tree with N vertexes, it has

N− 1 edges. These constraints may be expressed in the form of intersections of spheres as

|p0 − pβ1,2 |

rβ1,2
−

|p0 − pβ1,1 |

rβ1,1
= 0 (63)

|p0 − pβ2,2 |

rβ2,2
−

|p0 − pβ2,1 |

rβ2,1
= 0 (64)

...

|p0 − pβN−1,2
|

rβN−1,2

−
|p0 − pβN−1,1

|

rβN−1,1

= 0. (65)

45

Without loss of generality, it may be assumed that each sphere has a unique center as

by construction the distance ri = rj whenever pi = pj. Equations (63)–(65) form a

system of N − 1 equations linear in N distinct spheres; therefore, the constraints must be

independent.

This result allows graph theoretic algorithms to be employed in identifying sets

of independent constraint equations from which a final geolocation solution may be con-

structed. The algorithm shown in Figure 20 is proposed.

Require: a tree H ⊆ G such that G conforms to Definition B.1.
Ensure: Constraint matrix A eigenvalues are bounded from below.

1: Compute all possible rows of A with form given by the left hand side of (20), ~nij.
2: Select any acceptable row V3.
3: Select V2 maximizing |V3 × V2|.
4: Select V1 maximizing |V1 · (V3 × V2)|.

Figure 20. The proposed constraint selection algorithm for TOA position estimation.

It is possible to incorporate a priori information about the prefer-ability of various

edges of the TOA constraint graph though the use of some rule for assigning weights to

said edges. One such rule when used with a maximum weight spanning tree algorithm is

given by

wc =
max{di, dj}
|pj − pi|

. (66)

If a minimum weight spanning tree algorithm is used, then exchanging min{di, dj} for

max{di, dj} produces an appropriate weighting scheme. This weight function by construc-

tion prefers circular constraints with small radii. It is assumed that any such constraints

where the radius is too small have been eliminated from consideration, thereby, preventing

the weight function from giving preference to those constraints that are unacceptable for

other reasons.

2. Computational Complexity

It is also possible to determine the computational complexity of this modified al-

gorithm. The case of a single target is considered because extension to multiple targets is

46

elementary. Let n be the number of receivers to be considered. Then there are

nc =

(
n

2

)
=
n(n− 1)

2
≈ 0.5n2 (67)

possible constraints from which to choose an independent subset. This choice retains n−1

circular constraints. Via the direct mapping to linear constraint equations, there are

np =

(
n− 1

2

)
=

(n− 1)(n− 2)

2
≈ 0.5n2 (68)

pairs of linear constraints to check in order to find the most orthogonal pair. Once this pair

is identified, there are n − 3 further checks to perform to find the final constraint. This

leads to a total complexity of

nc + np + n− 3 ≈ n2 + n 7→ O(n2). (69)

C. APPLICATION TO HYPERBOLIC MULTILATERATION

A proposed method for the application of tower choice to the problem of TDOA

geolocation is presented in this section. There are three major components. The first is

a modified version of the algorithm given in [13] to enable receiver choice. Second is

the proposed method for using the generalized linear constraint equation and the concepts

presented in Section A to formulate the proposed constraint choice algorithm. Third is a

presentation of an analysis of the computational complexity of the proposed method.

1. Modified TDOA Position Estimation Algorithm

This work uses a modified version of the solution given in [13]. Reformulation is

necessary for two reasons. First, the refractivity situation considered here is a special case

of that considered in [13] ergo simplification is possible. Second, the original assumes that

a single receiver is used as the reference receiver. This assumption yields a much nicer set

of final equations but greatly restricts the ways in which receiver choice may be employed.

47

Assuming that the refractivity of the local medium is constant, we get the hyperbolic

constraint

|p2|
2

n−2
−

|p1|
2

n−2
− 2

(
pT2
n−2

−
pT1
n−2

)
p0 = c

2(t22 − t
2
1) − 2t0c

2(t2 − t1), (70)

where the α2 and α1 of the original are replaced with n−1, is exact [13, (9)]. The position

of the transmitter to be located is ~p0, the location of each observing receiver is ~pi where

i ∈ N, t0 is the time of transmission, and ti where i ∈ N is the time of reception at receiver

i. Equation (70) is a special case of

|pj|
2 − |pi|

2 − 2
(
pTj − p

T
i

)
p0 = c

2
n(t

2
j − t

2
i) − 2t0c

2
n(tj − ti). (71)

Letting k and l denote another pair of receivers, we solve (71) for 2t0c2n:

−1

(tl − tk)

[
|pl|

2 − |pk|
2 − 2

(
pTl − p

T
k

)
p0 − c

2
n(t

2
l − t

2
k)
]
= 2t0c

2
n. (72)

Combine (71) and (72) to form the constraint equation

|pj|
2 − |pi|

2 − 2
(
pTj − p

T
i

)
p0 − c

2
n(t

2
j − t

2
i)

=
(tj − ti)

(tl − tk)

[
|pl|

2 − |pk|
2 − 2

(
pTl − p

T
k

)
p0 − c

2
n(t

2
l − t

2
k)
]
. (73)

Rearrange (73) to obtain

2

[
(tj − ti)

(tl − tk)

(
pTl − p

T
k

)
−
(
pTj − p

T
i

)]
p0

=
(tj − ti)

(tl − tk)

(
|pl|

2 − |pk|
2 − c2n(t

2
l − t

2
k)
)
− |pj|

2 + |pi|
2 + c2n(t

2
j − t

2
i). (74)

48

Following [13], we can form three linearly independent constraints using five re-

ceivers. These constraints may be written in the form of the matrix equation

A
3×3
p0 = b

3×1
(75)

where each row of A is given by the left hand side of (74) for some choice of i, j, k, and l

and the respective entry of b is given by the right hand side of (74). Assuming that the

receiver pairs have been chosen to ensure linear independence, we can solve (75) directly.

This new version is susceptible to degeneracy under certain geometric configura-

tions of the observing receivers. The first is if all five receivers are coplaner, in which

case the final system is under-determined for three dimensional localization. The second

is if any four of the receivers are colinear as the fourth receiver yields no additional in-

formation. This is because when the two hyperbola formed using the first three receivers

are intersected, a circular constraint in formed. Imagine “sliding” one of the first three

receivers along the common line until it is in the position of the fourth receiver. Since the

target emitter is a constant distance from the common line, the intersecting circle never

changes; therefore, the fourth receiver contributes nothing.

2. Receiver Pair Choice Algorithm

In order to translate the TDOA geolocation problem into graph theoretic terms, it is

necessary to identify the vertexes and edges of the graph. This model is referred to as the

TDOA constraint graph.

Definition C.1 (TDOA Constraint Graph). Given a set of observers and a set of time-of-

arrival measurements, the TDOA constraint graph G is defined with a vertex set V(G)

equal to the set of observers and an edge set E(G) whose members are the admissible

observer pairings where each pairing represents a hyperbolic constraint.

By convention, the TDOA constraint graph does not contain as vertexes observers

that do not receive the signal of interest. One possible reason to exclude a constraint and

49

its associated edge is negligible time difference of arrival between the two observers in

question (which may give rise to computational degeneracy in some algorithms). It is

further assumed that the degenerate geometries described in the last section are not present.

To establish the relevance of the graph theoretic model of the constraint space, it

is sufficient to prove that, in the context of TDOA algorithms, any subgraph of the TDOA

constraint graph, which is a tree, has edges that form a linearly independent set of hyper-

bolic constraints.

Theorem C.1. Given a TDOA constraint graph G, any connected subgraph H of G is a

tree if and only if the edge set of H represents a set of independent hyperbolic constraints.

Proof. (⇐)Proceed by proving the contra-positive. Suppose H is a subgraph of G, which

is not a tree. Then it must contain a cycle [44, pg. 83]. Any cycle, written as a sequence of

vertexes, has form

pα1 → pα2 → . . .→ pαn → pα1 (76)

where α is the ordered set of indices of the observers included in the cycle. Now invoke

Definition C.1 to write the set of edges represented in (76) as hyperbolic constraints:

D2α2 −D
2
α1

= vp
(
t2α2 − t

2
α1

)
(77)

D2α3 −D
2
α2

= vp
(
t2α3 − t

2
α2

)
(78)

...

D2αN −D2αN−1
= vp

(
t2αN − t2αN−1

)
(79)

D2α1 −D
2
αN

= vp
(
t2α1 − t

2
αN

)
. (80)

Adding (77)–(79), we get

D2αN −D2α1 = vp
(
t2αN − t2α1

)
. (81)

Equation (81) is equal to (80), ergo the set of constraints is dependent.

50

(⇒)Now supposeH is a tree. Then by the definition of the TDOA constraint graph,

each edge represents a hyperbolic constraint. Let the edge set of H be denoted by β whose

elements are the un-ordered pairs of vertexes that form the respective edges. Denote the ith

edge of H as βi where βi,j, j ∈ {1, 2} denotes one vertex of the pair. From the definition

of the TDOA constraint graph, each βi is a hyperbolic constraint. These constraints may

be expressed as

D2β1,2 −D
2
β1,1

= vp
(
t2β1,2 − t

2
β1,1

)
D2β2,2 −D

2
β2,1

= vp
(
t2β2,2 − t

2
β2,1

)
...

D2βN−2,2
−D2βN−2,1

= vp
(
t2βN−2,2

− t2βN−2,1

)
D2βN−1,2

−D2βN−1,1
= vp

(
t2βN−1,2

− t2βN−1,1

)
.

(82)

AsH is a tree withN vertexes, then it hasN−1 edges and there areN−1 constraint equa-

tions [44, Theorem 4.2]. As (82) is a linear system in {D2βj,i |i = 1, 2, . . . , N−1; j = 1, 2} ≡

{D2i |i = 1, 2, . . . , N} which is under-determined, the equations must be independent. This

concludes the proof.

The link between the graph theoretic model and the usual TDOA constraint problem

is provided by Theorem C.1. Sets of independent hyperbolic constraints may be identified

by searching the TDOA graph for trees of a specified minimum size. The proposed algo-

rithm for performing said search is shown in Fig. 21.

Additional refinement is possible by incorporating information about which hyper-

bolic constraints are a priori preferable to others. It should be noted that in cases where

there is negligible difference in the time-of-arrival between two observing receivers, viz.

|tj − ti| ≈ 0, the estimation method given in Section C.1 becomes numerically unstable.

More generally, this is the situation in which the hyperbola approximates a plane. In order

to avoid constraints where this is true,

wh(i, j) =
|tj − ti|cn
|pj − pi|

(83)

51

Require: a tree H ⊆ G such that G conforms to Definition C.1.
Ensure: Constraint matrix A eigenvalues are bounded from below in absolute value.

1: Compute all possible rows of A with form given by

(tj − ti)

(tl − tk)

(
~pTl − ~pTk

)
− ~pTj + ~pTi ,

the from the left hand side of (74).
2: Select any acceptable row V3.
3: Select V2 maximizing |V3 × V2|.
4: Select V1 maximizing |V1 · (V3 × V2)|.

Figure 21. The proposed constraint selection algorithm for TDOA position estimation.

is one possible rule for assigning weights to the edges of the TDOA constraint graph. This

rule recognizes the fact that when the distance |pj − pi| between receivers i and j is very

large, correspondingly larger time differences are required to have the constraint surface to

be significantly different from a plane in the near field. This rule will work with a maximum

weight spanning tree algorithm. If a minimum weight spanning tree algorithm is used, then

the reciprocal of this weight function will serve.

3. Computational Complexity

It is also possible to compute the computational complexity of this modified algo-

rithm. The analysis is undertaken for a simple target as extending the result to multiple

targets is elementary.

Let n denote the number of receivers to be considered in the analysis. Then the

number of possible receiver pairs (hyperbolic constraints) is given by

nh =

(
n

2

)
=
n(n− 1)

2
≈ 0.5n2. (84)

This is also the total number of weights that must be computed if a weighting function is

used. Of these nh possible hyperbolic constraints, the spanning tree algorithm retains n−1

52

of them. As each linear constraint requires two hyperbolic constraints, there are

nc =

(
n− 1

2

)
=

(n− 1)(n− 2)

2
≈ 0.5n2 (85)

such constraints from which to choose. The process of choosing constraints first requires

the most orthogonal pair of linear constraints be identified. There are

np =

(
nc

2

)
=
nc(nc − 1)

2
≈ 0.5n2c ≈ 0.125

(
n2
)2

= 0.125n4 (86)

such pairs to check. Finally, once the most orthogonal pair has been identified, its nor-

mal vector must be checked against nc − 2 other linear constraints to find the third linear

constraint equation. This leads to an approximate total number of operations on the order

of

nh + nc + np + nc ≈ 0.125n4 + n2 7→ O(n4). (87)

D. APPLICATION TO DOPPLER VELOCITY ESTIMATION

As the Doppler velocity estimator presented in Chapter II is already in the form of

(55), application of the linear constraint choice algorithms is straightforward. The proposed

algorithm is shown in Fig. 22.

Require: A set of receivers which receive a Doppler shifted transmission.
Ensure: Constraint matrix R eigenvalues are bounded from below.

1: Compute all possible rows of A with form given by the left hand side of (35), ~rj
tj
− ~ri
ti

such that i 6= j.
2: Select any acceptable row V3.
3: Select V2 maximizing |V3 × V2|.
4: Select V1 maximizing |V1 · (V3 × V2)|.

Figure 22. The proposed constraint selection algorithm for Doppler velocity estimation.

The following definition may be used to enable use of graph theoretic approaches

to inform the constraint choice problem.

53

Definition D.1 (Doppler Constraint Graph). Given a set of observers and a set of received

frequency measurements, the Doppler constraint graphG is defined with a vertex set V(G)

equal to the set of observers and an edge set E(G) whose members are the admissible

observer pairings where each pairing represents a linear constraint.

As the constraint equations used in the Doppler velocity estimator are linear, any set of

four or more is linearly dependent. Therefore, graph theory cannot be used to select sets

of independent constraints as before. It is possible, however, to use graph theory to keep a

subset of constraints incorporating all observers and may, based on a priori reasoning, be

the most fruitful subset to which to apply the algorithm shown in Figure 22.

One possible way to choose a preferred subset of possible constraint equations in-

corporating all observers is to assign weights to the various edges of the Doppler constraint

graph and then apply a weight-optimized spanning tree algorithm. In the context of Doppler

velocity estimation, two kinds of constraint equations may be preferable to others. The first

kind has a very high absolute frequency shift |fj,i|, which indicates that the motion of the

target at the time of the observation is mostly in the line of sight between receivers i and

j. The second kind has an absolute frequency shift |fj,i| very close to zero, which indi-

cates the motion of the target at the time of observation is very close to perpendicular to

the line of sight between receivers i and j. The useful consequence of using such a rule in

assigning weights is that the constraint with the highest and lowest absolute frequency shift

are by construction most orthogonal and, therefore, good candidates to be selected by the

constraint choice algorithm. Methods for the assignment of such weights are beyond the

scope of this work.

Proposed methods for implementing receiver choice for TOA, TDOA, and DVE

were presented in this chapter. In all cases, this requires some understanding of the relation

between the structure of the rows of a square matrix and its determinant as well as some

rudimentary graph theory. While the method may be applied in all three contexts, the

computational complexity varies widely. For the TOA and DVE methods, the complexity

is O(n2) in the number of receivers n whereas it is O(n4) for the TDOA algorithm.

54

V. SIMULATION AND RESULTS

A simulation study was undertaken to provide proof of concept and to assess im-

pact of application of the techniques presented or developed in Chapters II, III, and IV to

methods developed in Chapter IV in an IEEE 802.16 compliant OFDMA network. This is

facilitated by the development of the Geolocation package for MATLAB, which contains

all the necessary functionality to carry out the work undertaken in this chapter.

An overview of the process of simulating the geolocation process is given in Sec-

tion A. The class structure of the simulation software is presented in Section B. Details

of how the various simulations were designed are given in Section C. The result of the

simulations undertaken are given in Section D. A discussion of the results is presented

in Section E. Many of the diagrams presented in this chapter are based on the Universal

Modeling Language (UML) 2.0 standard as described in [46]. See Appendix A for an

introduction to the UML diagrams used in this chapter as well as the modifications to the

standard used in this thesis. The class definitions are to be found in Appendix B. All header

and inline comments have been retained in the appendix for the interested reader.

When an algorithm is under discussion, it is denoted in a normal font. When the

software implementing said algorithm is under discussion, its typeface matches the UML

diagram notation. All classes are in boldface and methods are in a Courier font.

A. SIMULATION PROCESS

The process of simulating the geolocation problem can be approached from the

perspective of the activities involved in running a single scenario. A UML 2.0 activity

diagram of this process is shown in Figure 23.

The activity diagram is divided into three major subdivisions. These are initializa-

tion, simulation, and analysis. The environment, network, and target must be created to

initialize the scenario. The three activities are placed between fork and join bars in the

55

Create

Environment

Create

Network

Create

Target

Create Simulated Data

Analyze Simulated Data

Compute Error Statistics

Initialization

Simulation

Analysis

Figure 23. Activity diagram for a single simulation scenario.

56

activity diagram because they are mutually independent and, therefore, may be done in any

order, if not actually in parallel. The environment and network are assumed to be static

throughout the scenario. The target may either be a single target or a collection of targets

as needed. Once the scenario has been initialized, simulation may begin. Simulated timing

adjust (TA) and frequency adjust (FA) data is computed for each target observation in the

network expressed in IEEE 802.16 OFDMA-compliant units as described in Chapter II.

Next, the simulated data may be analyzed using any or all of the methods presented in

Chapters II through IV. Finally, these solutions are then compared to the original target

information in order to compute the error statistics needed for further analysis of algorithm

performance.

Due to the inherently modular nature of the process, it is interesting to consider

how the activity diagram changes if multiple simulation runs are considered. In this case,

it is necessary to add a several optional branches that control the flow through various

blocks, which may be optionally reset. It is assumed that the analysis method and statistics

collected will be common across runs. These changes are reflected in the activity diagram

presented in Figure 24.

B. CLASS STRUCTURE OF THE SIMULATION SOFTWARE

In order to carry out the simulations, an object-oriented MATLAB package was

developed. This package, called Geolocation, has a high-level structure as represented

in the diagram shown in Figure 25. This structure consists of five major parts: the En-

vironment, Network, Target, and Data classes with their associated subclasses and the

Analysis subpackage with its constituent classes. This section does not include a discus-

sion of the various stand-alone utility functions that do not belong to any class but are

included as part of the full Geolocation package. Each of the groups of classes and their

inter-relationships will be discussed in the relevant section below as well as any special

implementation details.

57

Create

Environment

Create

Network

Create

Target

Create Simulated Data

Analyze Simulated Data

Compute Error Statistics

Initialization

Simulation

Analysis

Reset?

No No No

Yes Yes Yes

Another

Run?

Yes

No

Figure 24. Activity diagram for a simulation scenario with multiple runs.
58

Analysis

Data

CollectedData

SimulatedData

Environment

ExampleEnvironment

Target

CVFWTarget

RandomTarget

CVRWTarget

Network

Figure 25. Structure diagram for the Geolocation package.

1. Environment Classes

As depicted in Figure 25, there are two classes that describe the local propagation

environment. These are the Environment and ExampleEnvironment classes. The for-

mer provides a description of a uniform environment completely characterized by its total

atmospheric pressure, temperature, dew-point, and path loss exponent. It also provides

functionality to compute the index of refraction, refractivity, and tools to convert between

the two values. The ExampleEnvironment class provides a small selection of predefined

environments which may be called by name.

2. Network Class

The Network class encapsulates the parameters necessary to describe an IEEE

802.16 OFDMA compliant network [1]. These parameters are described in Chapter II.

The constructor takes as arguments the primitive network parameters, and the derived pa-

rameters are computed upon demand by the appropriate associated “get” method.

59

3. Target Classes

The Target class encapsulates the necessary information about target state over time

to facilitate creation of the simulated data sets. Three subclasses that enable efficient cre-

ation of targets with different basic profiles are provided. The RandomTarget class gen-

erates a specified number of randomly placed targets with random velocity vectors. The

CVFWTarget class generates state information for a single target traversing a specified

track at constant speed. This class does not enforce the maximum 35 s between ranging

events required by the standard nor any other ranging triggers. The CVRWTarget class

generates state information for a single target traversing a random set of way-point at con-

stant speed.

4. Data Classes

The Data class and its associated subclasses provide three principle functionalities.

First is the establishment of a common core of properties that may be taken as available by

the classes associated with the Analysis subpackage. Second, it allows users to generate

simulated data sets consistent with the information contained in specified input objects of

classes Environment, Network, and Target. Finally, it provides an interface structure

allowing users to input data collected in field experiments in a way compatible with the

requirements of the appropriate member of the Analysis subpackage. It should be noted

that the option to mask data given in the SimulatedData class simulates intermittently

available data by using a simple process that resets at random all but a subset of the data at

any observation to NA. This is done without reference to how close or far the target is from

any tower.

5. Analysis Subpackage

The Analysis subpackage contains the set of classes and supporting functions that

enable various kinds of analysis of the kinds of data contained and described in objects of

class Data. A class diagram for the Analysis subpackage is given in Figure 26. It contains

several component classes. The details of which classes in the Analysis subpackage depend

60

VelocityError

PositionError

Doppler

Doppler4

Doppler4A

TDOA

TDOA5

TDOA5A

TDOA5B

TOA

TOA4

TOA4A

TOA4B

Graph
Used in Doppler4A, TDOA5A,
TDOA5B, TOA4A, and TOA4B
to impliment choice.

Figure 26. Structure diagram for the Analysis subpackage.

on which external classes in the larger Geolocation package are shown in the class structure

diagram presented in Figure 27.

Doppler TDOA TOA

DataEnvironment

Network

Target

Provides
center
frequency
for each
target.

Figure 27. Structure diagram for the Analysis subpackage with external dependencies.

a. TDOA Class Family

Four classes in the TDOA family are shown in Figure 25. The base class,

TDOA, provides a common set of properties, an abstract method for constructing the

constraint graph, and a concrete method for constructing individual constraint equations.

The TDOA5, TDOA5A, and TDOA5B classes are derived from this common base. The

TDOA5 class implements Bakhoum’s algorithm as described in [13] modified to reflect the

assumption of a single, common value for refractivity in the environment and the need to

handle the case of a negligible time difference of arrival between two observing receivers.

The TDOA5A class implements a modified version of the algorithm used in the TDOA5

61

class by incorporating receiver choice. The TDOA5B extends the TDOA5A class by in-

corporating the weighting function defined in Chapter IV.

The first implementation detail of note is that, for efficiency and simplicity,

the TDOA5A and TDOA5B classes determine the two most orthogonal constraint vectors

by finding the pair with the minimum absolute inner (dot) product rather than the cross

product with the largest magnitude. This is because the latter first requires computing the

cross product (a vector) followed by computing the length of the cross product vector,

while the former eliminates the first step. All three concrete classes of this family handle

the case of negligible time difference between two observing receivers by exploiting the

edge weight setting functionality of the Graph class to give such edges zero weight. If

this happens, the TDOA5 class does not enforce does not enforce the requirement that the

TDOA constraint graph takes the shape of a star (all hyperbolic constraints share a common

receiver) as is assumed in [13]. In all cases TDOA5 simply uses the first five edges of the

tree generated by the findTree method of the Graph class to form the estimate.

b. TOA Class Family

Four classes in the TOA family are shown in Figure 25. The abstract base

class, TOA, provides a common set of properties, an abstract method for constructing the

constraint graph, and a concrete method for constructing individual constraint equations.

The TOA4, TOA4A, and TOA4B classes are derived from this common base. The TOA4

class implements a time-of-arrival based algorithm employing four observing receivers to

estimate the position of an emitter in three dimensions. This is a circular multilateration

scheme. The TOA4A class extends the TOA4 class by implementing constraint choice

though use of the functionality of the Graph class. The TOA4B class extends the TOA4A

class by implementing a method for weighting the edges of the TOA constraint graph.

The first implementation detail of note is that for efficiency and simplicity

the TOA4A and TOA4B classes determine the two most orthogonal constraint vectors by

finding the pair with the minimum absolute inner (dot) product rather than the cross product

with the largest magnitude. This is because the latter first requires computing the cross

62

product (a vector) followed by computing the length of the cross product vector whilst the

former eliminates the first step. Second, this class does not check for the presence of either

of the degeneracy conditions discussed in Chapter IV. This should be noted by anyone who

decides to use these algorithms with a network where this condition is known to exist.

c. Doppler Class Family

Three classes in the Doppler family are shown in Figure 25. The base class,

Doppler, provides a common set of properties, an abstract method for constructing the

constraint graph, and a concrete method for constructing individual constraint equations.

The Doppler4 class uses a Doppler-based approach to estimate the velocity of a mobile

device in three dimensions using four observing receivers. The class assumes that the

center frequency of transmission is known. The Doppler4A class implements a modified

version of the algorithm used in the Doppler4 by incorporating constraint choice though

use of the functionality of the Graph class.

Two implementation details are of particular note. First, none of these

classes check the condition that three receivers are co-linear which would result in de-

generacy. This choice was made because it is reasonable to expect this to not be the case.

Second, the Doppler4A class definition is designed such that it would be very easy to de-

sign a Doppler4B class should an appropriate weighting function be available. This is

because the Doppler4A class includes a loop in the constraintGraph function that

sets the weight of each edge to one. Finally, the Doppler family of classes depends on the

Target class because the center frequency of transmission associated with any target is not

included in the Data class. This reflects the assumption made in Chapter II that the said

center frequency is known a priori.

d. PositionError Class

The goal of the PositionError class is to automate the generation and plot-

ting of certain error statistics related to position estimates.

63

e. VelocityError Class

The goal of the VelocityError class is to automate the generation and plot-

ting of certain error statistics related to velocity estimates.

f. Graph Class

The Graph class provides encapsulation for the information necessary to

describe a graph and to find a maximum weight spanning tree on said graph. The choice

of a maximum weight spanning tree was made in order to take advantage of weight as a

measure of edge preferability. That is, edges with higher weights are preferred to edges

with lower weights. It should be noted that the algorithm may be converted to a minimum

weight spanning tree through the use of the inverse map on the set of edge weights.

A few implementation details are of note. First, while it is possible to di-

rectly supply a vector of edge weights, this is not the preferred approach. The setEdge

and getEdge functions provide a reliable interface for setting individual edge weights and

retrieving the weight associated with any edge. At this time, these functions are designed

to only set or get a single weight; however, it would be possible to build on them to enable

setting or getting weights in batches. Second, by convention, an edge weight of zero is con-

sidered to indicate “no edge” and edge weights must be positive. Third, the findTree

method does not allow enforcement of a “star” topology for the output tree.

C. SIMULATION DESIGN

Monte Carlo simulations were designed to independently test the impact of receiver

choice (Section 3) and refractivity (Section 4) upon the quality of position estimates. Sev-

eral scenarios employing known targets tracks in space were also designed in order to take

a first look at the impact of these variables upon the problem of tracking a moving target

through a network (Section 5).

64

1. Exogenous Variables

The principle variables subject to choice are those required to construct the En-

vironment, Network, and Target class objects employed in the analysis as well as the

assumed refractivity of the medium provided to the position and/or velocity estimators. In

order to make better comparisons, seeds for the random number generator were matched

where appropriate.

2. Error Structure

The principle assumption made in formulating an error structure in this work is that

the simulated ranging process will yield the best possible final, stable values. For time

adjust, this means with resolution of one TA unit. For frequency adjust this means one

Hz. This assumption is facilitated by assuming that the simulated network uses a GPS

timing reference source per [1, 8.4.10.1]. GPS disciplined crystal oscillators are capable of

less than one part in 1012 of Allan deviation [47, 48]. This implies the ability to generate

signals at the base station at 10 GHz with accuracy of 0.01 Hz, or put another way, a clock

with timing resolution of better than 10−12 seconds. This is more than sufficient to make

the resolution of the timing and frequency units the dominant source of error. Errors are

assumed to be unbiased except for possible refractivity effects.

3. Impact of Receiver Choice on Randomly Distributed Targets

In order to assess the power of receiver choice in application to hyperbolic multi-

lateration, a single environmental condition with ambient temperature of 30 Celsius, dew-

point of 20 Celsius, and total pressure of 1000 millibar was chosen. The parameters com-

mon to all the algorithms are presented in Table 4. In all cases, the base algorithm uses

the required number of receivers. For TOA4 and Doppler4, this is four receivers, while

for TDOA5 this is five. For all others, consideration of at least two additional receivers is

enforced with additional receivers used if the detection threshold allows. The bandwidth

was chosen to allow comparison to further simulations undertaken with a different assumed

speed of light.

65

Table 4. Common simulation parameters for assessing receiver choice.

Parameter Value
Temperature (C) 30
Pressure (mb) 1000
Dew-point (C) 20
N (ppm) True Value
Path Loss Exponent 2
Bandwidth (MHz) 100
Subcarriers 2048
Runs 500
Targets/Run 250
Receivers 50
Detection Threshold (dBm) -90
X-Coordinate Limits (m) ±10 000
Y-Coordinate Limits (m) ±10 000
Z-Coordinate Limits (m) ±100
Separation (m) 1000

4. Impact of Refractivity

In order to assess the impact of refractivity, an additional set of three scenarios

were designed. These use the same common parameters as in the case of assessing receiver

choice as given in Table 4. Unlike the previous case, the propagation velocity is assumed

to be 3× 108 m per second.

5. A First Look at the Tracking Problem

While the Geolocation package does not explicitly implement any tracking func-

tionality, it is possible using the CVFWTarget class to take a first look at how some of the

methods proposed in this thesis perform for a single target on a defined track. The test track

and positions of the receivers in the simulated network are shown in Figure 28. Fifty sets

of data were generated along the track shown at positions marked by circles. Each of the

three TOA algorithms was applied to each of these data sets in turn and errors computed.

The results are presented in Section D.3.

66

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
4

−1

−0.5

0

0.5

1
x 10

4

X Coordinate (m)

Y
 C

o
o
rd

in
a
te

 (
m

)

Receiver

Target Track

0 5 10 15 20 25 30 35 40 45 50
−100

−50

0

50

100

Time (index)

Z
 C

o
o
rd

in
a
te

 (
m

)

Figure 28. Test case for measuring the performance of TOA algorithms when applied to
the tracking problem.

67

D. RESULTS

A presentation of the results of the simulation study undertaken is contained in this

section. The results related to receiver choice, refractive effects, and the initial tracking

scenario are presented in Subsections 1–3.

1. Receiver Choice

The impact of employing receiver choice varies across the different algorithms.

The algorithms are summarized in Table 5. A qualitative summary of the impact across the

different algorithms and measures based on observed patterns in the graphs of the kernel

density estimates is provided in Table 6.

Table 5. Summary of the major features of the various algorithms.

Algorithm Description Comments
Doppler4 3D Doppler velocity esti-

mator
Reference method.

Doppler4A Doppler4 with unweighted
receiver choice

All edges of constraint
graph have weight one.

TOA4 3D time-of-arrival position
estimator

Reference method. Ex-
tends [14]

TOA4A TOA4 with unweighted re-
ceiver choice

All edges of constraint
graph have weight one.

TOA4B TOA4 with weighted re-
ceiver choice

Constraint graph edges
weighted to prefer con-
straints close to one
receiver or the other
relative to the distance
between receivers.

TDOA5 3D time-difference-of-
arrival position estimator

Reference method. Ex-
tends [13]

TDOA5A TDOA5 with unweighted
receiver choice

All edges of constraint
graph have weight one.

TDOA5B TDOA5 with weighted re-
ceiver choice

Constraint graph edges
weighted to prefer large
time differences rela-
tive to distance between
receivers.

68

Table 6. Summary of the impact of receiver choice on selected performance measures
relative to the relevant baseline algorithm.

Algorithm Mean Median SD IQR
Doppler4A Tighter confi-

dence interval
Higher me-
dian, similar
dispersion

Significant im-
provement

Higher me-
dian, tighter
confidence
interval

TOA4A Narrow confi-
dence interval
concentrated at
lower values

Narrow confi-
dence interval
concentrated at
lower values

Narrow confi-
dence interval
concentrated at
lower values

Narrow confi-
dence interval
concentrated at
lower values

TOA4B Narrowest con-
fidence interval
concentrated at
lowest value.

Narrowest con-
fidence interval
concentrated at
lowest value.

Narrowest con-
fidence interval
concentrated at
lowest value.

Narrowest con-
fidence interval
concentrated at
lowest value.

TDOA5A Significant im-
provement

Significant im-
provement

Significant im-
provement

Significant im-
provement

TDOA5B Similar to
TDOA5A

Similar to
TDOA5A

Similar to
TDOA5A

Similar to
TDOA5A

The Doppler4A algorithm is an example of where sensor choice has an inconsis-

tent impact across measures. If mean and standard deviation are the primary performance

metrics, then employment of choice is supported by the results. The plot of the density

estimate for the mean L2 error is shown in Figure 29. The median of both density functions

is very similar and the number of cases in which the mean error is greater than 200 m is

substantially reduced. This is in comparison to the estimated density function for the inter-

quartile range of the L2 errors, a plot of which is shown in Figure 30. While the dispersion

of the inter-quartile range is visibly reduced, the median is higher.

The impact of receiver choice is consistent for the TDOA family of algorithms.

Incorporating receiver choice significantly improves performance. The weight function

proposed in Chapter IV does not appear to improve performance except for a small im-

provement in the median L2 error. A plot of the kernel density estimate of the mean L2

error is shown in Figure 31, and the standard deviation of the L2 errors is shown in Fig-

ure 32. In both cases, the density associated with the TDOA5A and TDOA5B algorithms is

69

0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Mean L2 Error (m)

D
e

n
s
it
y

Doppler4

Doppler4A

Figure 29. Kernel density estimate of the mean L2 error when using the Doppler4 and
Doppler4A algorithms.

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Interquartile Range of the L2 Errors (m)

D
e

n
s
it
y

Doppler4

Doppler4A

Figure 30. Kernel density estimate of the inter-quartile range of L2 errors when using the
Doppler4 and Doppler4A algorithms.

70

concentrated at lower values, while the TDOA5 algorithm has significant amounts of den-

sity at higher values. However, there is not a significant difference between the TDOA5A

and TDOA5B algorithms. In addition, while the TDOA5B algorithm may slightly outper-

form the TDOA5A algorithm in terms of the mean L2 error, the reverse appears to be true

for the standard deviation of the L2 errors.

50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Mean L2 Error (m)

D
e

n
s
it
y

TDOA5

TDOA5A

TDOA5B

Figure 31. Kernel density estimate of the mean L2 error when using the TDOA5,
TDOA5A, and TDOA5B algorithms.

The results for the TOA family of algorithms may be summarized as choice helps

and the suggested weight function used in the TOA4B method provides further perfor-

mance gains on average. A plot of the kernel density estimates for the median and inter-

quartile range of the L2 errors are shown in Figures 33 and 34, respectively. These two

plots show the statistics for which the improvement was least. In both cases, addition of

unweighted choice to the algorithm provides a significant improvement in performance as

indicated by the much taller peak centered at a lower value compared to the baseline. The

addition of weights that favor constraint planes closest to one receiver further narrows the

confidence intervals and reduces the median value of each statistic.

71

0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Standard Deviation of the L2 Errors (m)

D
e

n
s
it
y

TDOA5

TDOA5A

TDOA5B

Figure 32. Kernel density estimate of the standard deviation of L2 errors when using the
TDOA5, TDOA5A, and TDOA5B algorithms.

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Median L2 Error (m)

D
e

n
s
it
y

TOA4

TOA4A

TOA4B

Figure 33. Kernel density estimate of the median L2 error when using the TOA4, TOA4A,
and TOA4B algorithms.

72

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Interquartile Range of the L2 Errors (m)

D
e

n
s
it
y

TOA4

TOA4A

TOA4B

Figure 34. Kernel density estimate of the inter-quartile range of L2 errors when using the
TOA4, TOA4A, and TOA4B algorithms.

2. Refractivity Effects

When estimating velocity from FA information, there is no apparent benefit from

accounting for refractive effects. The estimated density function for the mean L2 error,

a plot of which is shown in Figure 35, is a representative example. The curves for each

estimated density function are virtually indistinguishable.

When using TDOA methods to estimate position, choice of refractivity has a com-

plicated impact. A plot of the kernel density estimates of for the mean L2 error when em-

ploying the TDOA5B algorithm with two different assumed values of refractivity is shown

in Figure 36. In this case, assuming a refractivity of N = −692 significantly degrades

performance.

The results of considering refractive effects in the context of TOA algorithms are

consistent. In all cases, assuming the speed of light is 3× 108 m/s noticeably (and in some

cases significantly) decreases performance. One good example is the mean L2 error; a plot

of the density estimate for which is shown in Figure 37. Employing either the TOA4A or

73

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Mean L2 Error (m)

D
e

n
s
it
y

Doppler 4A N = 352

Doppler 4A N = −692

Figure 35. Kernel density estimate of the mean L2 error at two different refractivity values
when estimating velocity in a 100 MHz network.

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

Mean L2 Error (m)

D
e

n
s
it
y

TDOA5B N = 352

TDOA 5B N = −692

Figure 36. Kernel density estimate of the mean L2 error at two different refractivity values
when estimating position using the TDOA5B algorithms in a 100 MHz

network.

74

TOA4B algorithm, we see that using the correct propagation velocity estimate improves

performance. The plot of the density estimates for the standard deviation of the L2 errors

shown in Figure 38 shows a similar pattern. In this figure, the TOA4B algorithm does not

appear to perform much worse when a speed of light of 3 × 108 m/s is specified than the

TOA4A algorithm does with the correct refractivity.

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Mean L2 Error (m)

D
e

n
s
it
y

TOA4B, N = 352

TOA4B, N = −692

TOA4A, N = 352

TOA4A, N = −692

Figure 37. Kernel density estimate of the mean L2 error at two different refractivity values
when estimating position using the TOA4A and TOA4B algorithms in a 100

MHz network.

3. Tracking

The results for the tracking test case when using the TOA family of algorithms is

not completely comparable to the previous results because for these the choice was made

to compute the L2 errors in the x-y plane and ignore the z-dimension error. Plotting a

kernel density estimate of the two-dimensional errors showed clear improvement in the

precision of the estimates with the TOA4B algorithm outperforming the TOA4A algorithm

which in turn outperforms the TOA4 algorithm as shown in Figure 39. As this is a tracking

scenario, it is also of interest to look at the same errors with respect to time as shown in

75

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Standard Deviation of the L2 Errors (m)

D
e

n
s
it
y

TOA4B, N = 352

TOA4B, N = −692

TOA4A, N = 352

TOA4A, N = −692

Figure 38. Kernel density estimate of the standard deviation of the L2 error at two
different refractivity values when estimating position using the TOA4A and

TOA4B algorithms in a 100 MHz network.

Figure 40. There are periods during the tracking scenario when all three methods perform

approximately equally well, especially very early and between times twelve and twenty-

one. The TOA4B algorithm is almost always best, but the margin is usually small relative to

the TOA4A algorithm. The TOA4 algorithm exhibits several large error spikes. Given the

way in which receivers are allocated, the bursty pattern may be because data from nearby

track positions is likely being analyzed by the same four receivers; thus, if the receiver

geometry is poor, it will be poor for a group of nearby points. As the other algorithms

force inclusion of two additional receivers, this likely accounts for the better performance

of the other algorithms as the choice algorithm will in general try to choose a better set

of receivers. During the spikes in TOA4 position errors, the TOA4A and TOA4B position

errors remain low and are consistent with the TOA4A and TOA4B position errors elsewhere

(for instance, position estimates one through eight and 20 through 30, inclusive).

76

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

L2 Error (m)

D
e

n
s
it
y

TOA4

TOA4A

TOA4B

Figure 39. Kernel density estimate of the L2 errors in the x-y plane when using the TOA4,
TOA4A, and TOA4B algorithms to track a target.

0 10 20 30 40 50
10

−1

10
0

10
1

10
2

10
3

10
4

Position Estimate Number

T
w

o
 D

im
e

n
s
io

n
a

l
L 2

 E
rr

o
r

(m
)

TOA4

TOA4A

TOA4B

Figure 40. The L2 error in the x-y plane when using the TOA4, TOA4A, and TOA4B
algorithms to track a single target as a function of time.

77

E. DISCUSSION

The various position and velocity solver classes do not check for relative receiver

positions which would cause degeneracy problems other than the check in the TDOA algo-

rithms for a negligible time difference-of-arrival. When using randomly distributed receiver

positions in three space, the probability of such an occurrence is negligible given the use of

one-m resolution in each dimension. A user could conceivably manually enter a network

configuration with receiver positions where this problem arises.

As noted in Section B.5.a, the TDOA5 class does not strictly follow the algorithm

given in [13] when the time difference-of-arrival between two receivers is zero. Due to the

way in which the findTree method is implemented in the Graph class, this is only an

issue if the tie is between the the lowest-numbered receiver and any of the others. Moreover,

such ties tend to be rare, especially when the bandwidth of the simulated network is high.

As the goal of the TDOA5 class is to provide a naive baseline solution to which to compare

the modified algorithms implemented in TDOA5A and TDOA5B, this small deviation does

not impact the validity of the result.

It is important to note the impact of the computational complexities of the various

algorithms. The approximate computational time of the various simulations in hours are

reported in Table 7. Due to the use of common parameters, any given scenario can be iden-

tified by an algorithm/refractivity pair. As is expected, there is a significant time penalty

paid for the use of choice in any form. The baseline algorithms were not significantly faster

using TOA4 and Doppler4 because of the design choice to use the methods implemented in

the Graph class to transform the raw set of receiver indices into a set of indices that could

be used to compute the final solution. The same method was also used in the TDOA5 class

to protect against cases in which there is a negligible time difference-of-arrival between

any pair of receivers, thus, avoiding numerical degeneracy in the solution.

The simulation results validate that choice is a powerful technique for improving

the performance of the various estimators. In most cases, the estimator employing the

naive choice algorithm outperforms the baseline estimator. It is less clear that incorpo-

78

Table 7. Approximate computation times for random target scenarios.

Algorithm N Time
TOA4 True 18h
TOA4A True 18h
TOA4A -692 18h
TOA4B True 18h
TOA4B -692 18h
TDOA5 True 18h
TDOA5A True 7d
TDOA5B True 7d
TDOA5B -692 7d
Doppler4 True 18h
Doppler4A True 18h
Doppler4A -692 18h

rating additional a priori information about the constraints provides additional gains. For

example, incorporating the proposed TDOA weighting scheme does not improve perfor-

mance and may degrade performance by some measures. The TOA4B estimator provides

a clear example of a good choice of weight improving performance.

The simulation results also validate that at sufficiently high system bandwidths (suf-

ficiently high time degrees of time resolution), failure to incorporate refractivity can make

a major impact on performance. Estimates of velocity do not seem to be impacted by the

inclusion of refractive effects. In TOA and TDOA approaches, there is clear evidence that

failure to choose a good refractivity estimate can have major negative impacts on estimator

performance; although, the size of the impact seems to vary with the statistic of interest.

The one example of tracking using the three TOA algorithms, which considered

two-dimensional rather than three-dimensional errors, is interesting for two reasons. First,

it illustrates position errors using the TOA4 algorithm may exhibit bursty behavior. That is,

there are distinct periods in which the TOA4 algorithm performs well and others in which

it performs poorly. This behavior is not exhibited by the TOA4A or TOA4B algorithms,

possibly because the inclusion of additional receivers in the constraint choice process al-

lows these algorithms to compensate for the poor receiver geometries that are suspected

79

to cause the problems exhibited by the TOA4 algorithm. Second, while the TOA4A algo-

rithm outperforms the other TOA algorithms in three-dimensional estimation problems, in

two dimensions the TOA4B algorithm may perform better.

The simulation framework and the results of the simulation study were presented

in this chapter. The simulation framework takes the form of an object-oriented MATLAB

package called Geolocation with its array of constituent classes and subclasses. Monte

Carlo simulation study using this package provided proof-of-concept of both the utility

(under appropriate circumstances) of incorporating refractive effects and receiver choice.

80

VI. CONCLUSION

The problem of how to refine methods for the passive geolocation of emitters in an

IEEE 802.16 OFDMA compliant wireless network was addressed in this thesis. The two

specific problems studied in this thesis were to incorporate the effects of local refractivity

and to exploit the ability to choose from the available receivers those that are used to form

the final position or velocity estimate. The former is applicable to all algorithms that require

an estimate of the propagation velocity of the received signal. The latter is applicable to

any estimator whose final form is a matrix equation and employs exactly three constraint

equations.

A. SUMMARY OF WORK

Ways in which to refine three common methods for extracting position or velocity

estimates from timing information in an IEEE 802.16 OFDMA network were explored in

this thesis. The first is the incorporation of clear-air refractive effects. The second is the em-

ployment of receiver (and correspondingly constraint) choice to improve the performance

of the base estimators.

Clear air refractive effects were incorporated into the positioning methods by ex-

amining their impact on the local propagation velocity. The local propagation velocity is

a function of refractive index which may be computed from four atmospheric variables:

ambient temperature, total pressure, dew-point, and carbon dioxide content.

Choice of constraints was incorporated though the use of a graph theory model. In

this model, the vertices correspond to the towers that have relevant information about the

target emitter and the edges represent possible constraints (circular, hyperbolic, or linear).

In the case of TOA and TDOA, this graph is used to identify a set of independent constraints

from which the final solution may be constructed. In the case of DVE, the set of constraints

is not independent but is the smallest subset which incorporates information from all the

81

available receivers. An attempt was made to use weighted edges, but the proposed weight

functions do not improve performance.

A MATLAB package called Geolocation was developed to provide end-to-end sim-

ulation capability. It includes classes to describe the environment, network configuration,

and target behavior. It provides other classes to generate data, estimate either position or

velocity in three dimensions, and generate the error vectors.

Simulation study was undertaken to test the efficacy of the aforementioned modifi-

cations. Incorporation of receiver choice has a dramatic impact on the performance of the

geolocation algorithms. Refractivity has a much less significant effect.

B. SIGNIFICANT RESULTS

Several significant results were presented in this thesis. These are the incorporation

of refractive effects, the development of an algorithm for receiver choice, and an object-

oriented MATLAB package for conducting simulations.

A method for incorporating refractive effects into geolocation models was proposed

in this thesis. A decision aid for analysts in deciding whether or not to incorporate refractive

effects, which relates the amount of bias per 10 µs to the standard deviation of the timing-

based range errors as a function of refractivity and time resolution, is given in Figure 17.

A generic receiver choice algorithm and applications to three different geoloca-

tion algorithms were proposed. The proposed method uses a simple, linear algebra-based

decision rule to choose constraint equations that together may be expected to be better con-

ditioned than the naive choice made in the original algorithms taken from the literature.

This work is believed to be new to the geolocation literature. Simulation results show un-

weighted receiver choice can significantly improve the performance of DVE, TOA, and

TDOA schemes. Addition of an unweighted receiver choice to the TOA and TDOA algo-

rithms yields 76% improvement of the median mean error for both. A 34% improvement in

the median mean error is obtained by the addition of an unweighted receiver choice to the

DD algorithm. The median standard deviations of the errors are improved by 91%, 91%,

82

and 75%, respectively. The cost in terms of computational complexity for the use of this

method varies by algorithm. For TOA and DD, the cost is on the order of the square of the

number of receivers. For TDOA, it is on the order of the number of receivers to the fourth

power.

An extensible, object-oriented MATLAB package was developed to conduct the

simulation studies. It has component classes that describe the environment, the network

configuration, the target (including three mobility models), build the simulated data, and

conduct the various kinds of analysis. Due to the way in which it was designed, it is possible

to build on the existing class definitions to create new algorithms. For instance, because

the generic constraint equations are given in vector form, it is possible to build on the base

classes for each algorithm family to construct two-dimensional estimators.

C. FUTURE WORK

There are many possible lines of future work either to increase the level of realism

of the model or extend what is know or can be done with the available data.

The proposed family of classes that describe target behavior included methods for

generating randomly positioned targets, a single target that moves along a fixed track at

constant speed, and a single target that moves along a random track at constant speed. The

RandomTarget class uses a naive mobility model to generate random velocity vectors by

merely specifying an upper bound on the absolute value of any component. This could be

improved upon by replacing it with a more realistic mobility model. The CVFWTarget

class generates N data points evenly spaced in time. This could be improved upon by

incorporating a mechanism to enforce network-specific ranging event triggers. While this

class does require the user to input way points (and thus may model any terrestrial road

network) it would be of use to build a class which inherits from CVFWTarget and provide

the user a set of pre-defined road network models. There is no target model that allows non-

constant speed targets. This is an area for improvement, especially if a class is developed to

allow for different legs with different speeds, such as might be encountered on a real road

83

network. The SimulatedData class employs a crude data masking scheme. Future work

could explore how to perform more realistic data masking.

Position and velocity estimators to provide single-time-point estimates given a suf-

ficiency of receivers are proposed in this thesis. As for the former, it would be of use to

build classes to provide tracking functionality. This requires implementing a mechanism

for storing current and historical target state information, a mechanism to estimate time-

advanced timing or frequency information per the rules of dead reckoning, and a method

for smoothing various position and velocity estimates. The second of these could be done

by exploiting a Data class that provides an interface for formatting user data for analysis

by other classes.

Only three-dimensional estimators with the associated cost of an additional re-

quired receiver over their respective two-dimensional counterparts were proposed. Two-

dimensional estimators could be added to the Analysis subpackage using the tools provided

in the TOA, TDOA, and Doppler classes.

Three sets of estimators expressed as matrix equations were proposed in this thesis.

No estimate quality metrics were proposed. One possible avenue of research is to explore

the eigenvalues of the A matrix of an estimator to assess estimate quality.

A method for incorporating clear-air refractive effects was proposed. The work is

limited in that, while a possible metric by which to assess the limits of the point estimate is

proposed, no thresholds have been identified. Future work could run a comprehensive set

of simulation experiments to determine possible threshold values.

Weight functions for use in choosing constraints for building TOA and TDOA po-

sition estimates were proposed. The proposed TDOA weight function was demonstrated to

be sub-optimal despite its initial intuitive appeal. Therefore, it would be helpful for future

work to propose and test additional possible weight functions to obtain improved perfor-

mance under most circumstances. Future work could also explore ways in which to extend

the idea of a weighted constraint graph to the DVE case.

84

All of the proof-of-concept work in this thesis was performed via simulation. Sim-

ulation results come with the caveat that the assumptions of the simulation are reasonably

reflective of real world conditions. Future work should apply the methods proposed in this

thesis and implemented in software to data collected in the real world.

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

A. A BRIEF INTRODUCTION TO UML DIAGRAMS

A brief introduction to reading Unified Modeling Language (UML) diagrams is

provided in this appendix. Definitions, notations, and conventions are taken from [46]

unless otherwise noted. Two kinds of diagrams are introduced in this appendix: Structure

Diagrams and Activity Diagrams.

The note symbology is common to all kinds of UML diagrams. An example note is

shown in Figure 41. The dashed line “tail” connects the note to whatever other symbol is

A Note

Figure 41. An example UML note with connector.

being commented on [46]. Here the note simply reads “A Note”. The tail is optional.

A. CLASS DIAGRAMS

Class diagrams are used to model the relationships between different classes [46,

p. 11]. An example of a class diagram is shown in Figure 42. This example shows three

Figure 42. An example class diagram.

related classes, each shown as a box with a bold-face name in it. The arrows depict the

two kinds of relationship used in this thesis. The kind connecting ConcreteClass to Ab-

stractClass shows that the former is a generalization of the latter and inherits all properties

and methods[46, p. 88]. The arrow connecting DependentClass to ConcreteClass shows

87

that the former depends on the latter [46, p. 84]. Had the DependentClass class been

dependent upon AbstractClass, this would mean that it depends only on those parts of

ConcereteClass, which are defined in AbstractClass. If the name of a class is italicized,

then it is an abstract class. This means that it has either properties and/or methods with

defined names whose details of implementation are defined elsewhere [49, p. 10.78]. The

ConcereteClass class provides a complete implementation of any abstract properties or

methods described in AbstractClass as required to accomplish its particular purposes [46,

p. 93].

B. ACTIVITY DIAGRAMS

Activity Diagrams are used to model sequential and parallel activities within the

system [46, p. 11]. These diagrams always start with a filled circle and end with a filled

circle within another circle [46, p. 44]. Diamonds denote decision and merge points [46,

p. 47]. Fork and join bars (one-to-many and many-to-one) denote activities conducted in

parallel [46, p. 50]. An activity diagram may use partitions (black lines) which divide the

activity into groups of related processes [46, p. 59]. An annotated example of an activity

diagram is shown in Figure 43. In this example, upon starting the activity there is an initial

decision of whether to do Activity C or to flow into parallel execution of Activities A and

B. After one of these two paths is taken, both merge into a single path which terminates at

the output. An example partition is shown with an annotation. Normally this annotation

would be the name of some region of interest in the activity.

88

Activity A Activity B

Activity C

Partition

Decision

Merge

Fork

Join

Figure 43. An example activity diagram.

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

B. MATLAB CODE IMPLEMENTING THE GEOLOCATION
PACKAGE

A. ENVIRONMENT CLASS FAMILY

1. Environment Class
classdef Environment < handle

%ENVIRONMENT environmental model
% holds the data and provides methods for the physical
% model of the environment.
%INPUTS to Environment
% pressure: total pressure in millibar
% temp: ambient temperature in degrees C
% dewpoint: dewpoint spread in degrees C
% pathLossExponent: the path loss exponent to be used
% in the one-way range equation.
%CONSTANTS
% c: the NIST standard value for the speed of light
% 299792458 m/s.
%DEPENDANT Variables
% N: refractivity in parts per million.
% n: index of refraction (unitless)
%STATIC Methods
% n2ppm(n): convert index of refraction n to
% refractivity
% ppm2n(N): convert refractivity N to index of
% refraction

properties(Constant)
c = 299792458;%speed of light in meters per second

end%end constant properties

properties (SetAccess = immutable)
pressure = 1000%total atmospheric pressure in millibar
temp = 25;%ambient temperature in degrees C
dewpoint = 10;%dewpoint in degrees C
pathLossExponent = 2;%path loss exponent

end%end properties

properties (Dependent)

91

N%refractivity
n%index of refraction

end

methods
function[obj] = Environment(pressure, temp,...

dewpoint, pathLossExponent)
%validate and store pressure
validateattributes(pressure, {’numeric’}, ...

{’scalar’, ’nonnegative’},’’,’pressure’)
obj.pressure = pressure;
%validate and store temp
validateattributes(temp, {’numeric’}, ...

{’scalar’,’>=’,-20,’<=’,50},’’,’temperature’)
obj.temp = temp;
%validate and store dewpoint
validateattributes(dewpoint, {’numeric’}, ...

{’scalar’,’<=’,temp},’’,’dewpoint’)
obj.dewpoint = dewpoint;
%validate and store pathLossExponent
validateattributes(pathLossExponent, ...

{’numeric’},{’scalar’,’positive’},’’,...
’pathLossExponent’)

obj.pathLossExponent = pathLossExponent;
end

function [out] = get.N(obj)
% convert the total pressure to dry air and water
% vapor pressure
Pw = parPresH2O(obj.pressure, obj.temp,...

obj.dewpoint); %partial pressure of water
Pd = obj.pressure - Pw;%dry air is what is left

% Compute the refractivity estimate
K1 = 77.6890;%dry air coeffient
K2 = 71.2952;%wet air linear coefficient
K3 = 375463;%wet air second term coefficient
DK = obj.temp+273.15;%convert temperature to

%degrees kelvin
out = K1*Pd/DK + K2*Pw/DK + K3*Pw/(DKˆ2);

end

92

function [out] = get.n(obj)
out = obj.ppm2n(obj.N);

end

%getRefractivity(obj)--returns refractivity of local
% environment
%obj: environment for which to return
% refractivity
function[N] = getRefractivity(obj)

% convert the total pressure to dry air and water
% vapor pressure
Pw = parPresH2O(obj.pressure, obj.temp,...

obj.dewpoint); %partial pressure of water
Pd = obj.pressure - Pw;%dry air is what is left

% Compute the refractivity estimate
K1 = 77.6890;%dry air coeffient
K2 = 71.2952;%wet air linear coefficient
K3 = 375463;%wet air second term coefficient
DK = obj.temp+273.15;%convert temperature
% to degrees kelvin
N = K1*Pd/DK + K2*Pw/DK + K3*Pw/(DKˆ2);

end%end getRefractivity
end%end methods

methods (Static)
function[N] = n2ppm(n)

N = (n-1)*10ˆ6;
end

function[n] = ppm2n(N)
n = 1 + (N/(10ˆ6));

end
end

end%end Environment class
%%
%parPresH2O.m -- Partial Pressure of Water in the atmosphere
%
%J. Q. McClintic, 2012
%
%Inputs:
% ATP: atmospheric pressure in millibars

93

% temp: temperature in celcius
% dewpoint: current dewpoint temperature in celcius
%
%Outputs: PPW: partial pressure of water in millibars
%
%%
function[PPW] = parPresH2O(ATP, temp, dewpoint)

% Temperature Check
% If the temp is greater than 0 deg C, use the water
% curve, else the ice curve
if temp > 0

PPW = waterCurve(ATP, dewpoint);
else

PPW = iceCurve(ATP, dewpoint);
end %end if

end

%%
%waterCurve.m -- A function to compute the partial pressure
% of water assuming the air temperature is greater than 0
% degrees C
%
%Buck, A. New Equations for Computing Vapor Pressure and
%Enchancement Factor. Journal Of Applied Meteorology.
%December 1981, 1527-32.
%
%J. Q. McClintic, 2012
%
%Inputs:
% ATP: atmospheric pressure in millibars
% temp: temperature in celcius. ambient for pure water
% vapor, else dewpoint temperature
%
%Outputs: PPW: partial pressure of water in millibars
%%
function[PPW] = waterCurve(ATP, temp)

% Compute the unenchanced partial pressure of water

%declare the various parameters table 2, curve ew6
a = 6.1121;
b = 18.564;
c = 255.57;

94

d = 254.4;

% compute the partial pressure
Ew = a*exp(temp*(b - temp/d)/(temp + c));

% Compute the enhancement factor

% declare the various parameters
A = 7.2e-4;
B = 3.2e-6;
C = 5.9e-10;
D = 0; %included in case the choice of
E = 0; % cuves were to change

% compute the enhancement factor
f = 1 + A + ATP*(B + C*(temp + D + E*ATP)ˆ2);

% Compute the full partial pressure
PPW = Ew*f;

end

%%
%iceCurve.m -- A function to compute the partial pressure of
% water assuming the air temperature is less than 0
% degrees C
%
%Buck, A. New Equations for Computing Vapor Pressure and
%Enchancement Factor. Journal Of Applied Meteorology.
%December 1981, 1527-32.
%
%J. Q. McClintic, 2012
%
%Inputs:
% ATP: atmospheric pressure in millibars
% temp: temperature in celcius. ambient for pure water
% vapor, else dewpoint temperature
%
%Outputs: PPW: partial pressure of water in millibars
%
%%
function[PPW] = iceCurve(ATP, temp)

% Compute the unenchanced partial pressure of water

95

%declare the various parameters table 2, curve ei2
a = 6.1115;
b = 22.452;
c = 272.55;

% compute the partial pressure,
Ei = a*exp(b*temp/(temp + c));

% Compute the enhancement factor

% declare the various parameters
A = 3e-4;
B = 4.18e-6;
C = 0; %included in case the choice of
D = 0; % cuves were to change
E = 0;

% compute the enhancement factor
f = 1 + A + ATP*(B + C*(temp + D + E*ATP)ˆ2);

% Compute the full partial pressure
PPW = Ei*f;

end

2. ExampleEnvironment Class
classdef ExampleEnvironment < Geolocation.Environment

%ExampleEnvironment Provides a set of predefined example
%environments
% The ExampleEnvironment Class provides a set of
% predefined example environments which may be selected
% by the user in lieu of specifying individual
% environmental variables.
%
%Example environments include (specify in input Env). . .
% MontereySummer
% DCWinter
% MiamiSummer
%
%Author: J. Q. McClintic

96

%Date: 20 AUG 2012

properties (Constant)
end

methods
function[obj] = ExampleEnvironment(Env)

%swich on environment name
switch Env

case ’MontereySummer’
P = 1000;
T = 23;
D = 15;
E = 2;

case ’DCWinter’
P = 1000;
T = 10;
D = 5;
E = 2;

case ’MiamiSummer’
P = 1000;
T = 40;
D = 35;
E = 2;

otherwise
error([’Specified Example Environment’,...

’ is not supported.’])
end%end switch

obj = obj@Geolocation.Environment(P, T, D, E);
end

end
end

B. NETWORK CLASS FAMILY

classdef Network<handle
%NETWORK Describes the 802.16 Network configuration
% Provides data and network functionality to simulate

97

% the relevant features of an IEEE 802.16 network for
% conducting Geolocation simulations.
%Network(towers,BW,Nused,G): creates an shell network to
% hold the network description.
% towers: number of towers in the network
% BW: bandwidth in Megahertz (MHz)--must be >=1 per
% 802.16 8.4.1
% Nused: number of subcarriers used including DC
% subcarrier as defined in 8.4.2.3, 8.4.1
% G: ratio of CP time to ‘‘useful" time
% (1/32, 1/16, 1/8, 1/4)
%placeTower(obj,location,n): places a tower
% obj: which network place tower in
% location: where to put the tower
% n: which tower to place
%randomTowers(obj,dispersion,seperation): generates
% random towers for the network
% obj: the network to place random towers in
% dispersion: 1(x)3 vector of maximum dispersion in
% each direction
% seperation: minimum seperation in meters between
% towers.

properties (SetAccess = immutable)
nTowers%number of towers in the network
BW = 1; %nominal channel bandwidth in MHz
Nused = 2048; %number of subcarriers including the DC

% subcarrier
G = 1/4; %ratio of CP time to ‘‘useful" time.

end%end of properties

properties (SetAccess = private)
towers%an M (x) 3 matrix of tower locations
detectThreshold = -90;%detection threshold of a

% recieved signal in dBm
end

properties(Dependent)
n%sampling factor--computed as part of initialization
% or upon change to a relevant parameter per 8.4.2.3
Nfft%FFT size of the OFDMA
Fs%sampling frequency in Hertz

98

deltaF%subcarrier spacing in Hertz
Tb%useful symbol time in seconds
Tg%CP time in seconds
Ts%OFDMA symbol time in seconds
Tsamp%sampling time in seconds
ps%physical slot length in seconds
tau%timing adjust unit in seconds
refTimeTol%reference timing tolerance
ssFreqTol%the subscriber station maximum center
%frequency error tollerance

end

methods
% constructors
function[obj] = Network(towers, BW, Nused, G)

%validate attributes
validateattributes(towers,{’numeric’},...

{’nonempty’,’positive’, ’scalar’},’’,’towers’)
validateattributes(BW, {’numeric’},...

{’nonempty’,’positive’,’scalar’,’>=’,1},’’,’BW’)
validateattributes(Nused,{’numeric’},...

{’nonempty’,’positive’,’scalar’,’<=’,2048},...
’’,’Nused’)

validateattributes(G,{’numeric’},...
{’nonempty’,’positive’,’scalar’,’<’,1,’>’,0},...
’’,’G’)

%check the value of G per 8.4.2.3
if (G==1/32)||(G==1/16)||(G ==1/8)||(G==1/4)

obj.G = G;
else%throw error

error(’G may only be 1/32, 1/16, 1/8, or 1/4.’)
end%end if

%store initial inputs
obj.towers = zeros(towers, 3);
obj.nTowers = towers;
obj.BW = BW;
obj.Nused = Nused;
obj.G = G;

end%end of constructor

% setters

99

function[] = placeTower(obj, location, n)
if (n<=length(obj.towers(:,1)))&&(n>=1)%if number

% makes sense, place tower
obj.towers(n, :) = location;

else%issue error message if tower number is out of
%bounds
error([...

’tower number must be between one and ’,...
num2str(length(obj.towers(:,1)))])

end
end;%end placeTower

function[] = randomTowers(obj, dispersion, seperation)
%determine the number of partions of the region for
%the purposes of placing towers. Use of the common
%log ensures that the number of partions stays
%reasonable as the size of the simulation space
%grows.
xBreaks = floor(log10(dispersion(1)))+1;
yBreaks = floor(log10(dispersion(2)))+1;
%now compute the partition lines in each direction
temp = 2*dispersion(1)/xBreaks;
xParts = -dispersion(1):temp:dispersion(1);
temp = 2*dispersion(1)/yBreaks;
yParts = -dispersion(1):temp:dispersion(1);
%compute the number of towers to place in each
%partition
minTowers = floor(obj.nTowers/(xBreaks*yBreaks));
%if at least one tower goes in every block, place
%that many towers in each of those blocks
halfSep = seperation/2;
if minTowers >=1

zone = 0;%counter for region
block = zeros(minTowers, 3);%holds towers for
% this block

temp = [0 0];%holds the position of a tower
for x = 1:1:xBreaks

for y = 1:1:yBreaks
%compute the lower left and upper right
%corner positions
llcx = xParts(x)+halfSep;

100

llcy = yParts(y)+halfSep;
urcx = xParts(x+1)-halfSep;
urcy = yParts(y+1)-halfSep;
%make the first tower in the block
block(1, 1) = randi([llcx, urcx], 1, 1);
block(1, 2) = randi([llcy, urcy], 1, 1);
%set the counter for the number of towers
%in the block to one
count = 1;
%while there are fewer towers in the block
%than the minimum number of towers, add
%towers to to block which are at least
%seperation away from each tower already
%in the block.
while count < minTowers

%make a place to hold distances
dists = zeros(1, count);
%make a random tower
temp(1) = randi([llcx, urcx], 1, 1);
temp(2) = randi([llcy, urcy], 1, 1);
%for each tower already in the block,
%check the distance to this new tower
for t = 1:1:count

diff = block(t,1:2) - temp;
dists(t) = sqrt(dot(diff,diff));

end%end loop over the towers in
% the block

%if the minimum distance is acceptable,
%place the tower
if min(dists)>seperation

%increment count
count = count+1;
%add tower to block
block(count, 1:2) = temp;

end%end if to add tower to block
end%end while loop to place towers in the

%block
%add the z-component to the tower
%positions
tempZ = randi([-dispersion(3)...

dispersion(3)], minTowers, 1);
block(:,3) = tempZ;

101

%push the towers to the object’s tower
%list
obj.towers((1+zone*minTowers):...

(1+zone)*minTowers,:)...
= block;

zone = zone+1;
end%end for each y

end%end for each x
end%end if statement (minTowers > 0)
%now place any additional towers into blocks at
%random
remaining = ...

obj.nTowers - minTowers*xBreaks*yBreaks;
block = [0 0 0];
while remaining > 0;

%pick a block at random
tempX = randi([1 xBreaks],1,1);
tempY = randi([1 yBreaks],1,1);
llcx = xParts(tempX)+halfSep;
llcy = yParts(tempY)+halfSep;
urcx = xParts(tempX+1)-halfSep;
urcy = yParts(tempY+1)-halfSep;
%randomly generate a tower in that block
block(1) = randi([llcx, urcx], 1, 1);
block(2) = randi([llcy, urcy], 1, 1);
%check if the seperation rule is obeyed
temp = (obj.towers(:,1) - block(1)).ˆ2;
temp = temp + (obj.towers(:,2) - block(2)).ˆ2;
temp = max(sqrt(temp));
%if it is, then add it to the object’s list of
%towers and decrement remaining
total = minTowers*xBreaks*yBreaks;
if temp > seperation

block(3) = randi([-dispersion(3)...
dispersion(3)],1,1);

obj.towers(total + remaining,:) = block;
remaining = remaining - 1;

end%end if statement
end%end for loop to place remaining towers

end;%end randomTowers

%get.n--set sampling factor per 8.4.2.3

102

%obj: the network to configure
function[n] = get.n(obj)

if mod(obj.BW, 1.75)==0
n = 8/7;

elseif mod(obj.BW, 1.25)==0
n = 28/25;

else
n = 8/7;

end%end if
end%end get.n

%get.Nfft--set the network FFT size per 8.4.2.4
%obj: the network to configure
function[Nfft] = get.Nfft(obj)

temp = log2(obj.Nused);
Nfft = 2ˆceil(temp);

end%end get.Nfft

%get.Fs--Set sampling frequency per 8.4.2.4
%obj: the network to configure
function[Fs] = get.Fs(obj)

Fs = floor(1e6*obj.n*obj.BW/8000)*8000;
end%end get.Fs

%get.deltaF--set the subcarrier spacing per 8.4.2.4
%obj: the network to configure
function[deltaF] = get.deltaF(obj)

deltaF = obj.Fs/obj.Nfft;
end%end get.deltaF

%get.Tb--set the useful symbol time per 8.4.2.4
%obj: the network to configure
function[Tb] = get.Tb(obj)

Tb = 1/obj.deltaF;
end%end get.Tb

%get.Tg--set CP time per 8.4.2.4
%obj: the network to configure
function[Tg] = get.Tg(obj)

Tg = obj.G*obj.Tb;
end%end get.Tg

103

%get.Ts--set OFDMA symbol time per 8.4.2.4
%obj: the network to configure
function[Ts] = get.Ts(obj)

Ts = obj.Tb + obj.Tg;
end%end get.Ts

%get.Tsamp--set the sampling time per 8.4.2.4
%obj: the network to configure
%NOTE: all computations done using values
%internal to obj
function[Tsamp] = get.Tsamp(obj)

Tsamp = obj.Tb/obj.Nfft;
end%end get.Tsamp

%get.ps--set the length of a physical slot (seconds)
%per 10.3.4.2
%obj: the network to configure
function[ps] = get.ps(obj)

ps = 4/obj.Fs;
end%end get.Ps

%get.tau--set the of a timing adjust unit (seconds)
%per 10.3.4.3
function[tau] = get.tau(obj)

tau = 1/obj.Fs;
end%end get.tau

%setRefTimeTol--set the absolute value of the
%reference timing tolerance (seconds) per Table 639
function[refTimeTol] = get.refTimeTol(obj)

refTimeTol = (obj.Tb/32)/4;
end%end get.refTimeTol

%get.ssFreqTol--set the absolute value of the maximum
%subscriber station center frequency error (seconds)
%per 8.4.15.1
function[ssFreqTol] = get.ssFreqTol(obj)

ssFreqTol = 0.02*obj.deltaF;
end%end setRefTimeTol

% getters
function[towers] = getTower(obj, index)

104

towers = obj.towers(index, :);
end%end getTowers

end%end of methods

end%end of Network Class

C. TARGET AND ITS RELATED CLASSES

1. Target Class
classdef Target < handle

%TARGET Contains data about the target(s) in the simulation
% contains data structures and methods to completely
% decribe the location and behavior of simulated
% targets.

properties (SetAccess = protected)
time%time stamps of position and velocity in
%milliseconds from simulation start
position% N (x) 3 matrix of position of target in

%meters
velocity% N (x) 3 matrix of velocity of target
frequency%holds the transmitted frequency of each

%target in Hz
power% transmitted power in dBm
n%number of targets

end%end properties

methods
%% constructor
%Target(n)--preallocates and empty target object
%n: number of targets to generate
function[obj] = Target(n)

obj.time = zeros(n,1);
obj.position = zeros(n,3);
obj.velocity = zeros(n,3);
obj.n = n;
obj.frequency = zeros(n,1);
obj.power = -10+zeros(n,1);%assume maximum power
%out as the max power recievable by the BS per the
%802.16 8.4.14.4.2

105

end%end constructor

%% setters
function set.time(obj,value)

if min(value) < 0
error(’Time must be >= to zero’);

elseif isempty(obj.time)
obj.time = value;

elseif length(value) ˜= length(obj.time)
error([’value must be the same’,...

’ size as the original’]);
else

obj.time = value;
end

end

function set.position(obj,value)
[r0, c0] = size(obj.position);
[r1, c1] = size(value);
if isempty(obj.position)

obj.position = value;
elseif (r0 ˜= r1)||(c0 ˜= c1)

error([’value must be the same’,...
’ size as the original’]);

else
obj.position = value;

end
end

function set.velocity(obj,value)
[r0, c0] = size(obj.velocity);
[r1, c1] = size(value);
if isempty(obj.velocity)

obj.velocity = value;
elseif (r0 ˜= r1)||(c0 ˜= c1)

error([’value must be the same’,...
’ size as the original’]);

else
obj.velocity = value;

end
end

106

function set.frequency(obj,value)
if min(value) < 0

error([’Frequency must be greater’,...
’ than or equal to zero’]);

elseif isempty(obj.frequency)
obj.frequency = value;

elseif length(value) ˜= length(obj.frequency)
error([’value must be the same’,...

’ size as the original’]);
else

obj.frequency = value;
end

end

function set.power(obj,value)
if isempty(obj.power)

obj.power = value;
elseif length(value) ˜= length(obj.power)

error([’value must be the same’,...
’ size as the original’]);

else
obj.power = value;

end
end

%% getters
function[n] = get.n(obj)

n = obj.n;
end%end getTime

function[time] = get.time(obj)
time = obj.time;

end%end getTime

function[position] = get.position(obj)
position = obj.position;

end%end getPosition

function[velocity] = get.velocity(obj)
velocity = obj.velocity;

end%end getVelocity

107

function[position, velocity] =...
getStateByTime(obj, time)

% compute appropriate index
temp = ˜logical(obj.time - time);

% handle the request
if sum(temp ˜= 0)

index = find(temp, 1, ’first’);
position = obj.position(index, :);
velocity = obj.velocity(index, :);

else
error(’No data for specified time’)

end
end%end getStateByTime

function[time, position, velocity] = ...
getStateByIndex(obj, index)

time = obj.time(index);
position = obj.position(index, :);
velocity = obj.velocity(index, :);

end%end getStateByIndex

end%end methods

end% Target class

2. RandomTarget Class
classdef RandomTarget < Geolocation.Target

%RandomTarget This class extends Target by incorporating
%methods to generate randomly located targets in the
%target space.
%INPUTS to class constructor
% n: number of targets to create
% dispersion: 1 (x) 3 vector of maximum dispersions in
% each direction
% speed: maximum absolute value of any velocity vector
% component
% freqRange: 1 (x) 2 vector of the upper and lower
% bounds of the range of center frequencies.

108

properties (SetAccess = immutable)
dispersion%1 (x) 3 vector of maximum dispersions
%in each direction
speed%maximum value of any velocity vector component
freqRange%range of expected frequency values in Hz

end

methods
% constructor
%RandomTarget--populates object with targets with
%random positions and velocities
%obj: target object to populate
%n: the number of targets to generate
%speed: maximum value of any velocity vector component
%freqRange: range of expected frequency values in Hz
function[obj] = RandomTarget(n, dispersion, speed,...

freqRange)
% generate on object of class Target
obj = obj@Geolocation.Target(n);

% validate and store inputs for later use
validateattributes(dispersion, {’numeric’}, ...

{’vector’, ’numel’, 3, ’nonnegative’},...
’’,’dispersion’);

obj.dispersion = dispersion;
validateattributes(speed, {’numeric’}, ...

{’scalar’, ’nonnegative’},’’,’speed’);
obj.speed = speed;
validateattributes(freqRange, {’numeric’}, ...

{’vector’, ’numel’, 2, ’nonnegative’},...
’’,’freqRange’);

obj.freqRange = freqRange;

% make the time, position, and velocity vectors. I
% should note that the modification of position
% works with a very restrictive set of conditions
% embodied in the setter that should preclude the
% behavior objserved. If it suddenly fails, then
% there will need to be a temp variable to hold the
% new matrix and then overwrite the old position
% matrix.
obj.time = zeros(obj.n,1);

109

obj.position(:,1) =...
randi([-dispersion(1),dispersion(1)],...
[obj.n,1]);

obj.position(:,2) =...
randi([-dispersion(2),dispersion(2)],...
[obj.n,1]);

obj.position(:,3) =...
randi([-dispersion(3),dispersion(3)],...
[obj.n,1]);

obj.velocity = randi([-speed,speed],obj.n,3);
obj.frequency = randi(freqRange, obj.n, 1);

end%end constructor

end% end methods

end

3. CVFWTarget Class
classdef CVFWTarget < Geolocation.Target

%CVFWTarget Constant Velocity Fixed Waypoint Target
% This class builds a target with a constant velocity
% and constant targets. Inherits from the
% Geolocation.Target class.
%
% CVFWTarget(waypoints, speed, n, frequency)
% waypoints: waypoints to drive the target through (at
% least two)
% speed: speed of the target at all times (>0
% meters/second)
% n: number of observations to construct. (>0)
% frequency: center frequency of the transmission
% Computes n target position/velocity/time sets evenly
% spaced over the path specified by waypoints
%
% The plotTrack method provides three different plots
% of the track. If the version argument is ‘‘1" then a
% three-D plot is given. If the version is ‘‘2" then
% there is a 2-D plot of the X-Y components and a
% seperate plot of the Z component. If version is ‘‘3"
% then each component is plotted as a seperate function

110

% of time.

properties (SetAccess = protected)
waypoints
speed

end

properties (SetAccess = immutable)
legLength%length of each leg
legPoints%number of points on each leg
totalDistance%total distance covered by all legs
cumLength%cummulative length of the legs
headings%direction of each leg
timeUnit%time elapsed between observations
distUnit%distance covered between observations
wpTime%time of arrival at each waypoint

end

methods
%% Constructor
function[obj] = CVFWTarget(waypoints, speed, n,...

frequency)
%call the superclass constructor
obj = obj@Geolocation.Target(n);

%store the inputs
obj.waypoints = waypoints;
obj.speed = speed;
obj.frequency = frequency.*ones(obj.n, 1);

%Figure out the heading and length of each leg
%(legLength)
[tR, tC] = size(obj.waypoints);
obj.headings = zeros(tR - 1, tC);
for ind = 2:1:tR

%compute the un-normalized heading vectors
obj.headings(ind -1 , :) = ...

obj.waypoints(ind, :) ...
- obj.waypoints(ind-1, :);

end%end loop over legs
obj.legLength = ...

sqrt(...

111

diag(obj.headings*transpose(obj.headings)));

%Compute totalDistance and cumLength of the route.
obj.totalDistance = sum(obj.legLength);
obj.cumLength = cumsum(obj.legLength);

%compute some other odds and ends
obj.distUnit = obj.totalDistance/(obj.n-1);
obj.timeUnit = obj.distUnit/obj.speed;

%Compute the number of waypoints on each leg
%Compute the number of points up the n-th waypoint
temp = floor(obj.cumLength./obj.distUnit);
%store the first value directly as it is unchanged
obj.legPoints(1) = temp(1);
%Remove from that total the number the number of
%points cummulative to the previous waypoint to get
%the number on that leg.
for l = 2:1:length(obj.legLength)

obj.legPoints(l) = temp(l) - temp(l-1);
end%end loop over the legs

%normalize the length of each leg
obj.headings = diag(1./obj.legLength)*obj.headings;

%compute the observation times
obj.time = ((1:1:obj.n)-1).*obj.timeUnit.*1e3;

%compute the waypoint arrival times (wpTime)
obj.wpTime = obj.cumLength./obj.speed;
obj.wpTime = [0 ; obj.wpTime];

%store the position and velocity of the initial
%observation
obj.position(1,:) = obj.waypoints(1,:);
obj.velocity(1,:) = obj.headings(1,:).*obj.speed;
%initialize the observation number
obs = 2;
%For each leg
for l = 1:1:length(obj.legLength)

%Set any adjustments for this leg

112

%for each point on this leg
for p = 1:1:obj.legPoints(l)

%compute the velocity of the target
obj.velocity(obs,:) = ...

obj.speed.*obj.headings(l,:);
%compute the position of the target
obj.position(obs,:) =...

obj.waypoints(l,:) + ...
(obj.time(obs)./1e3-obj.wpTime(l)).* ...
obj.velocity(obs,:);

%increment the observation number
obs = obs+1;

end%loop over points on leg
end%end loop over each leg

end%end constructor CVFWTarget

%% Setters
function set.waypoints(obj, value)

[r, c] = size(value);
if isempty(obj.waypoints) && (r >= 2) && (c == 3)

obj.waypoints = value;
elseif isempty(obj.waypoints) == false

error(’waypoints have already been set.’)
elseif c ˜= 3

error([’All waypoints must have’,...
’ x, y, and z components’])

else
error(’At least two waypoint must be supplied.’)

end
end%end set.waypoints

function set.speed(obj, value)
if isempty(obj.speed) && (value > 0)

obj.speed = value;
elseif value <=0

error(’speed must be >= 0.’)
elseif isempty(obj.speed) == false

error(’speed has already been set.’)
end

end%end set.speed

%% Plot Methods

113

% write a plot method for the track TO DO: impliment
% code to check the incoming direction and adjust the
% position of the start and end of track labels so
% they do not overwrite the track line
function[] = plotTrack(obj, version)

%validate arguments
validateattributes(version, ...

{’numeric’},...
{’integer’, ’positive’, ’>=’, 1, ’<=’, 3},...
’’,’version’)

%set up the graphic
figure()
switch version

case 1%3D plot
plot3(obj.position(:,1), ...

obj.position(:,2),...
obj.position(:,3),...
’Marker’, ’o’)

xlabel(’X Position (meters)’)
ylabel(’Y Position (meters)’)
zlabel(’Z Position (meters)’)
text(obj.position(obj.n,1), ...

obj.position(obj.n,2),...
obj.position(obj.n,3),...
’End’,...
’VerticalAlignment’, ’Bottom’)

text(obj.position(1,1), ...
obj.position(1,2),...
obj.position(1,3),...
’Start’,...
’VerticalAlignment’, ’Bottom’)

case 2%X-Y in 2D and seperate Z
subplot(2, 1, 1)
plot(obj.position(:,1), obj.position(:,2),...

’Marker’, ’o’)
xlabel(’X Position (meters)’)
ylabel(’Y Position (meters)’)
text(obj.position(obj.n,1), ...

obj.position(obj.n,2),...
’End’,...
’VerticalAlignment’, ’Bottom’)

text(obj.position(1,1), ...

114

obj.position(1,2),...
’Start’,...
’VerticalAlignment’, ’Bottom’)

subplot(2, 1, 2)
plot(obj.time./1e3, obj.position(:,3),...

’Marker’, ’o’)
xlabel(’Time (seconds)’)
ylabel(’Z Position (meters)’)

case 3%three seperate component graphs
subplot(3,1,1)
plot(obj.time./1e3, obj.position(:,1),...

’Marker’, ’o’)
xlabel(’Time (seconds)’)
ylabel(’X Position (meters)’)
subplot(3,1,2)
plot(obj.time./1e3, obj.position(:,2),...

’Marker’, ’o’)
xlabel(’Time (seconds)’)
ylabel(’Y Position (meters)’)
subplot(3,1,3)
plot(obj.time./1e3, obj.position(:,3),...

’Marker’, ’o’)
xlabel(’Time (seconds)’)
ylabel(’Z Position (meters)’)

otherwise%error out
error(’Please set version as 1, 2, or 3.’)

end%end switch
end%end the plotTrack method

end% end methods

end

4. CVRWTarget Class
classdef CVRWTarget < Geolocation.CVFWTarget

%CVRWTarget Constant Velocity Random Waypoints Target
% This class extends CVFWTarget (Constant Velocity
% Fixed Waypoint Target) by allowing the user to
% specify the bounds and number of a set of uniformly
% randomly positioned waypoints in the track space.

115

%
% INPUTS
% wpCount: (integer >=2) number of waypoints to
% generate
% speed: (positive real) speed of the target in meters
% per second
% xbounds: (1 X 2 vector) lower and upper bounds of the
% x position
% ybounds: (1 X 2 vector) lower and upper bounds of the
% y position
% zbounds: (1 X 2 vector) lower and upper bounds of the
% z position
% frequency: (positive real) center frequency of the
% transmission
% n: (integer >=1) number of observations to generate

properties (SetAccess = immutable)
wpCount
xbounds
ybounds
zbounds
end

methods
%% Constructor
function[obj] = CVRWTarget(wpCount, speed, ...

xbounds, ybounds, zbounds,...
n, frequency)

%validate the inputs
validateattributes(wpCount, {’numeric’},...

{’integer’,’>=’,2},...
’’,’wpCount’)

validateattributes(xbounds, {’numeric’},...
{’row’, ’ncols’, 2, ’integer’},...
’’,’xbounds’)

validateattributes(ybounds, {’numeric’},...
{’row’, ’ncols’, 2, ’integer’},...
’’,’xbounds’)

validateattributes(zbounds, {’numeric’},...
{’row’, ’ncols’, 2, ’integer’},...
’’,’xbounds’)

116

%compute the random waypoints
tempX = randi(xbounds, wpCount, 1);
tempY = randi(ybounds, wpCount, 1);
tempZ = randi(zbounds, wpCount, 1);

temp = [tempX tempY tempZ];

%call the superclass constructor
obj = obj@Geolocation.CVFWTarget(temp, speed,...

n, frequency);

%store the inputs
obj.wpCount = wpCount;
obj.xbounds = xbounds;
obj.ybounds = ybounds;
obj.zbounds = zbounds;

end%end constructor

%% Setters

%% Getters

%% Plot Methods
end

end

D. DATA AND ITS RELATED CLASSES

1. Data Class
classdef Data

%DATA provides both abstract properties common to all
%datasets and a set of functions which may be of use when
%handling said data. Where applicable, terminology
%follows the IEEE 802.16 nomenclature.
%
%This class cannot actually be insubstantiated but must
%be used as a superclass for a class which defines the

117

%properties in a concete way. These properties are
%n: the number of targets
%timeSigma: the standard deviation of the timing noise
%(assumed to be white Gaussian noise).
%freqSigma: the standard deviation of the frequency noise
%(assumed to be white Gaussian noise).
%timingAdjust: N target by M tower matrix of timing
%adjust data
%frequencyAdjust: N target by M tower matrix of frequency
%adjust data
%frequency: N target by M tower matrix of observed
%frequency
%power: N target by M tower matrix of recieved power
%levels in dBm
%
%Author: J. Q. McClintic
%Data: 27 MAR 2012

properties (SetAccess = private, Abstract)
n;%number of targets
timeSigma;%the standard deviation of the timing
%noise
freqSigma;%the standard deviation of the frequency
%noise
timingAdjust;%N target by M tower matrix of timing
%adjust data
frequencyAdjust;%N target by M tower matrix of
%frequency adjust data
frequency;%N target by M tower matrix of observed
%frequency
power;%N target by M tower matrix of recieved power
%levels in dBm

end%end properties

methods
% Constructor
%Dat--constructor for class Data
%Env--an object of class Environment
%Net--an object of class Network
%Tgt--an object of class Target
function[obj] = Data()

%does nothing

118

end%end Data

% Getters

%getTowerTA--returns the timing adjust values for all
%targets associated with a given tower
%obj: object of class Data
%n: target number
function[out] = getTowerTA(obj, n)

out = obj.timingAdjust(:,n);
end%end getTowerTA

%getTowerFrequency--gets the observed frequency of all
%targets at a given tower
%obj: object of class Data
%n: target number
function[out] = getTowerFrequency(obj, n)

out = obj.frequency(:,n);
end%end getTowerFrequency

%getTowerFA--gets the observed frequency adjust values
%of all targets at a given tower
%obj: object of class Data
%n: target number
function[out] = getTowerFA(obj, n)

out = obj.frequencyAdjust(:,n);
end%end getTowerFA

%getTargetTA--returns the timing advance values
%associated with a specified target
%obj: object of class Data
%n: target number
function[out] = getTargetTA(obj, n)

out = obj.timingAdjust(n,:);
end%end getTargetTA

%getTargetFrequency--returns the observed frequency
%from a given target at each tower
%obj: object of class Data
%n: target number
function[out] = getTargetFrequency(obj, n)

out = obj.frequency(n,:);

119

end%end getTargetFrequency

%getTargetFA--returns the frequency adjust values from
%a given target at each tower
%obj: object of class Data
%n: target number
function[out] = getTargetFA(obj, n)

out = obj.frequencyAdjust(n,:);
end%end getTargetFA

%getTargetPower--returns the recieved power of the
%transmission at each tower
%obj: object of class Data or derived
%n: target/observation number
function[out] = getTargetPower(obj,n)

out = obj.power(n,:);
end%end getTargetFA

end%end methods

methods(Static)
%computeTimingAdjust
%obj: the Data object to manipulate
%Env--an object of class Environment
%Net--an object of class Network
%Tgt--an object of class Target
function[TA] = computeTimingAdjust(Env, Net, Tgt)

%variables
%distance: holds the distances to one tower
%diff: holds the vector difference between tower
%location and
% target location
tau = Net.tau*Env.c/...

ppm2n(getRefractivity(Env));%timing adjust
%units in meters
TA = zeros(Tgt.n, Net.nTowers);%holds the TA

%information

%for each tower
for k = 1:1:Net.nTowers

%compute the vector difference
diff = Tgt.position-repmat(...

120

Net.towers(k,:),Tgt.n,1);
%make the vector of differences using linear
%algebra
distance = sqrt(diag(diff*transpose(diff),0));
%divide each distance by the timing adjust unit
%in meters
distance = distance./tau;
%round the timing adjust units and write to
%obj.timingAdjust
TA(:,k) = round(distance);

end%end loop over towers

end%end computeTimingAdjust

%computeFrequencyAdjust
%Env--an object of class Environment
%Net--an object of class Network
%Tgt--an object of class Target
function[FA] = computeFrequencyAdjust(Env, Net, Tgt)

%subtract the transmitted frequency from the
%recieved frequency at each tower to obtain
%frequency adjust.
transmitted = ...

repmat(Tgt.frequency, 1, Net.nTowers);
FA = round(...

Geolocation.Data.dopplerShift(Env, Net, Tgt)...
- transmitted);

end%end computeFrequencyAdjust

%dopplerShift--computes the observed frequencies at
%each reciever
%Env--an object of class Environment
%Net--an object of class Network
%Tgt--an object of class Target
function[F] = dopplerShift(Env, Net, Tgt)

F = zeros(Tgt.n, Net.nTowers);%holds the recieved
%frequencies
vp = ...

Env.c/ppm2n(getRefractivity(Env));%propagation
%velocity in the environment

121

%for each tower
for k = 1:1:Net.nTowers

%compute the normal vectors by first computing
%the relative position of the targets with
%respect to the tower
relPos = Tgt.position - ...

repmat(Net.towers(k,:),Tgt.n,1);
%then computing the distance from the tower to
%each target
dist = sqrt(diag(relPos*transpose(relPos)));
%and forming this into a diagonal matrix
dist = diag(dist);
%left multiply by the inverse of the distance
%matrix to obtain the normal vector
normal = dist\relPos;

%compute the Line-of-Propagation term
lop = diag(normal*transpose(Tgt.velocity))./vp;
%compute the observed frequencies and write to
%frequency adjust (FA) matrix
F(:,k) = Tgt.frequency.*(ones(Tgt.n,1) - lop);

end%end loop over towers

end%dopplerShift

%recievedPower--computes the receieved signal power in
%dBm at each tower.
%This uses only the basic path loss model not the full
%model incorporating factors like coding scheme,
%repetition rate, etc.
%Env--an object of class Environment
%Net--an object of class Network
%Tgt--an object of class Target
%P--the recieved power at each tower in dBm
function[P] = recievedPower(Env, Net, Tgt)

P = zeros(Tgt.n, Net.nTowers);%holds the recieved
%power levels

for tar = 1:1:Tgt.n%for each target
xmt = Tgt.power(tar);%get the power transmitted

%by the target

122

for tow = 1:1:Net.nTowers%for each tower compute
% the recieved power

d = getTower(Net,tow) - Tgt.position(tar,:);
d = sqrt(dot(d,d));
P(tar,tow) = xmt - ...

10*Env.pathLossExponent*log10(d);
end%end loop over towers

end%end loop over targets

end%recievedPower

end%end static methods

end%end Data class

2. SimulatedData Class
classdef SimulatedData < Geolocation.Data

%SimulatedData: A class which provides a masked version
%of the the dataset appropriate to simulate intermittent
%data availability of data from passive observation of,
%for instance, ranging messages.
%
%Inputs:
%Env: an object of class Environment or derived
%Net: an object of class Network or derived
%Tgt: an object of class Target or derived
%
%NOTE: due to a quirk of MATLAB, if the

properties (SetAccess = private)
masked = false;
mask;
timeSigma;%the standard deviation of the timing noise
freqSigma;%the standard deviation of the frequency

% noise
n;%number of targets/observations of a target
timingAdjust;%N target by M tower matrix of timing

% adjust data
frequencyAdjust;%N target by M tower matrix of

%frequency adjust data

123

frequency;%N target by M tower matrix of observed
% frequency

power;%N target by M tower matrix of recieved power
% levels in dBm

end

methods
function[obj] = SimulatedData(Env, Net, Tgt, mask)

validateattributes(mask, {’logical’}, {’nonempty’})

% set up the underlying data class object there is
% no call to the superclass constructor because no
% properties are defined in the superclass, only
% methods.

% Set up the underlying true data.
% Populate timingAdjust data
obj.timingAdjust = ...

obj.computeTimingAdjust(Env, Net, Tgt);

% Populate frequencyAdjust data
obj.frequencyAdjust = ...

obj.computeFrequencyAdjust(Env, Net, Tgt);

% Populate the frequency data
obj.frequency = obj.dopplerShift(Env, Net, Tgt);

% Populate the power data
obj.power = obj.recievedPower(Env, Net, Tgt);

%compute and populate the number of targets
obj.n = length(obj.timingAdjust(:,1));

%handle the case where masking is requested
if mask == true

%set the mask flag
obj.masked = true;
%set up a default mask--no tower hears the any
%target at
% any time
obj.mask = NaN(obj.n, Net.nTowers);
%set the number of towers for the initial fix

124

hears = 7;
%set up the mask
for ind = 1:1:obj.n%each observation

%--determine which towers ‘‘hear" the target
%--determine which ones interact with the
%target
%--set 1 in all elements of the mask
%corresponding to towers which interact with
%the target
%--retain NaN otherwise
%this works by determining which entries in
%the mask should be changed to 1 from NaN.
pow = getTargetPower(obj,ind);
temp = sort(pow, ’descend’);
thresh = 0.5*(temp(hears)+temp(hears+1));
for k = 1:1:Net.nTowers%for each tower

if pow(k)>thresh%if sufficient recieved
%signal

obj.mask(ind,k) = 1;%reset the mask
% value

end%end if
end%for each tower

%determine the number of towers which hear
%the target
hears = unidrnd(min(Net.nTowers, 7),1,1);

end%end for over observations

obj.timingAdjust = obj.timingAdjust.*obj.mask;
obj.frequencyAdjust = ...

obj.frequencyAdjust.*obj.mask;
obj.frequency = obj.frequency.*obj.mask;
obj.power = obj.power.*obj.mask;

end%end handling the case where masking is
%requested

end%end constructor

% Getters
function[out] = get.timingAdjust(obj)

out = obj.timingAdjust;
end

125

function[out] = get.frequencyAdjust(obj)
out = obj.frequencyAdjust;

end

function[out] = get.frequency(obj)
out = obj.frequency;

end

function[out] = get.power(obj)
out = obj.power;

end
end

end

3. UserData Class
classdef UserData < Geolocation.Data

%UserData Provides an interface for inputting
%user-collected data for analysis.
% FUNCTIONS
%
% UserData(n, towers): constructor
% n: number of observations
% towers: vector of tower indices, positive integers
%
% obj = inputData(obj, n, t, value, type): interface
% obj: object of class UserData
% n: observation number to set
% t: tower index associated with observed value
% value: an observation-type appropriate measurement in
% units defined per Data class definition
% type: type of measurement to set.
% NOTE: in order to keep the inputted data, the old
% UserData-class object must be overwritten because
% Data does not inherit from the value class.
%
% The timeSigma and freqSigma properties are listed but
% not implimented because they’re not currently used in
% the code base. This class is simple to extend to the
% case where these properties should be set.

126

properties(SetAccess = private)
n;%number of targets
timeSigma;%the standard deviation of the timing
%noise
freqSigma;%the standard deviation of the frequency
%noise
timingAdjust;%N target by M tower matrix of timing
%adjust data
frequencyAdjust;%N target by M tower matrix of
%frequency adjust data
frequency;%N target by M tower matrix of observed
%frequency
power;%N target by M tower matrix of recieved power
%levels in dBm
towers;%list of towers indices matching those in the

% corresponding Network-class object
end%end properties

methods
%Constructor
function[obj] = UserData(n, towers)

%validate attributes
validateattributes(n, {’numeric’}, ...

{’numel’,1,’>=’,1, ’nonempty’},’’,’n’)
validateattributes(towers, {’numeric’}, ...

{’vector’, ’nonempty’, ...
’integer’, ’positive’},...
’’,’towers’)

%check that the tower serials are unique
temp = true;%holds whether or not to continue
t = 1;
%while temp is true and we have not yet checked
%each tower
while (temp == true) && (t <= length(towers))

if length(find(towers==towers(t)))==1
%check next by incrementing t
t = t + 1;

else
temp = false;%stop checking
%output error
error([’Tower index ’,num2str(towers(t)),...

’ is not unique.’])

127

end %end if
end%end while
%store the inputs once validated
obj.n = n;
obj.towers = sort(towers, ’ascend’);

%set up the data storage
obj.timingAdjust = ...

zeros(obj.n, length(obj.towers));
obj.frequencyAdjust = ...

zeros(obj.n, length(obj.towers));
obj.frequency = ...

zeros(obj.n, length(obj.towers));
obj.power = ...

zeros(obj.n, length(obj.towers));
end%end constructor

%input a data value
function[obj] = inputData(obj, n, t, value, type)

%validate attributes
validateattributes(obj, ...

{’Geolocation.UserData’},...
{’nonempty’}, ’’,’obj’)

validateattributes(n, {’numeric’},...
{’nonempty’, ’integer’, ...
’positive’, ’numel’, 1, ’<=’ obj.n}, ’’, ’n’)

%t (the tower to set data for) is checked by
%finding it in the towers list of obj
if length(find(obj.towers==t))==1

%determine the column to set
col = find(obj.towers == t);

else
%output error
error([’Tower serial number ’,num2str(t),...

’ is unrecognized’])
end %end check input t.
%attributes of value are checked based on the type
%that the type is acceptable is checked by the
%switch statment.

%switch on type and set value
switch type

128

case ’timingAdjust’
validateattributes(value, {’numeric’},...

{’nonempty’, ’positive’,...
’integer’, ’scalar’}, ...
’’, ’value’)

obj.timingAdjust(n,col) = value;
case ’frequencyAdjust’

validateattributes(value, {’numeric’},...
{’nonempty’, ’integer’, ’scalar’},...
’’, ’value’)

obj.frequencyAdjust(n,col) = value;
case ’frequency’

validateattributes(value, {’numeric’},...
{’nonempty’, ’scalar’}, ’’, ’value’)

obj.frequency(n,col) = value;
case ’power’

validateattributes(value, {’numeric’},...
{’nonempty’, ’scalar’}, ’’, ’value’)

obj.power(n,col) = value;
otherwise

error(’Unrecognized data type’)
end

end%end inputData
end%end methods

end%end UserData class

E. THE ANALYSIS SUBPACKAGE

1. Doppler
classdef Doppler

%Doppler (Abstract) Provides the common components to all
%the classes which use the Doppler equation to compute
%estimated velocity vectors
% This abstract class provides the common components of
% all classes which use the Doppler equation to compute
% estimated velocity vectors. It has abstract
% properties
% velocity: holds the estimated velocity vectors
% N: the assumed refractivity in parts per million

129

% T: the number of towers to use in computing the
% estimate
%
% The abstract methods defined in this class are
% [A, b] = constraintMatrix(obj, Env, Nwk, Dat, N, tgt,
% constraints)
% obj: an object of appropriate class
% Env: an object of class Environment
% Nwk: an object of class Network
% Dat: an object of class Data
% N: refractivity in ppm
% tgt: the target to consider
% constraints: the matrix of tower pairs which
% represent independant constraints
% A: the matrix part of the matrix equation
% b: the vector of constants
%
% The concrete function defined in this class is
% [A, b] = constraintEquation(Env, Dat, Nwk, Tgt, N,
% tgt, i, j, type)
% i, j: indices of the four towers used in the constraint
% Net: an object of class Network
% Dat: an object of class Data
% Env: an object of class Env
% N: the assumed refractivity in ppm
% tgt: target number
% type: use the recieved frequency (RF) at the towers
% or the frequency adjust (FA) value.
% A--row of the matrix
% b--entry in the column vector
properties(SetAccess = private, Abstract)

velocity
N
T

end%end abstract properties

methods(Abstract)
[A, b] = constraintMatrix(obj, Env, Nwk, Dat, N, ...

tgt, constraints)
end%end abstract methods

methods(Abstract, Static)

130

[out] = dopplerConstraintGraph(Nwk, Dat, T, tgt)
end%end abstract, static methods

methods(Static)
function[A, b] = constraintEquation(Env, Dat, Nwk,...

Tgt, N, tgt,...
i, j, type)

%validate arguments
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(Tgt, {’Geolocation.Target’},...
{’nonempty’},...
’’,’Tgt’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’’,’N’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

validateattributes(i, {’numeric’},...
{’nonempty’,’scalar’,’positive’,’integer’,...
’<=’,Nwk.nTowers})

validateattributes(i, {’numeric’},...
{’nonempty’,’scalar’,’positive’,’integer’,...
’<=’,Nwk.nTowers})

if i == j
error(’i cannot equal j’)

end

%get the target frequency information
switch type

case ’FA’
fData = getTargetFA(Dat, tgt);

case ’RF’
fData = getTargetFrequency(Dat, tgt);

131

otherwise
error(’type must either be FA or TA’)

end%switch

%extract the parts of fData needed for this
%analysis
fi = fData(i);%the FA/RF at tower i
fj = fData(j);%the FA/RF at tower j
fji = fj - fi;%the difference in frequencies
%between tower i and j

%get the timing advance information
temp = getTargetTA(Dat, tgt).*Nwk.tau;
ti = temp(i);
tj = temp(j);

%compute the speed of light estimate
vp = Env.c/Env.ppm2n(N);

%get the center frequency of the target
ft = Tgt.frequency(tgt);

%output the left and right sides of the constraint
A = (ft/vpˆ2).*...

(getTower(Nwk,j)./tj - getTower(Nwk,i)./ti);
b = fji;

end
end%end static methods

end

2. Doppler4
classdef Doppler4 < Geolocation.Analysis.Doppler

%Doppler4 Computes the estimated three-D velocity vector of a target
% This class provides methods to compute estimated
% velocity vectors for targets given their timing
% advance values are known or estimated and the center
% frequency of the transmitter is known or an unbiased
% estimate of same.
% velocity: N (x) 3 matrix of velocity estimates
properties (SetAccess = private)

132

velocity
N
T = 4
type

end%end properties

methods
% Constructor
%Velocity--sets up an empty velocity argument
%Dat: an object of class Data
function[obj] = Doppler4(Dat, Env, Nwk, Tgt, N,...

T, type)
%validate input arguments
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(Tgt, {’Geolocation.Target’},...
{’nonempty’},...
’’,’Tgt’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’’,’N’)

validateattributes(T, {’numeric’}, ...
{’nonempty’, ’scalar’, ’>=’, 4, ’<=’, 4},’’,’T’)

validatestring(type, {’FA’,’RF’},’’,’type’);
if Nwk.nTowers < T

error([’Insufficient towers in network’,...
’ to support analysis.’])

end

%store the validated inputs
obj.N = N;
obj.T = T;
obj.type = type;

%initialize the position estimates

133

obj.velocity = zeros(Dat.n,3);%holds results
%of frequency

%for each target
for tgt = 1:1:Dat.n

%find a set of constraints
constraints = ...

obj.dopplerConstraintGraph(Nwk, Dat, T, tgt);

%form the constraint matrix and vector
[A,b] = constraintMatrix(obj, Env, ...

Nwk, Dat, Tgt,...
N, tgt, type, constraints);

%solve for the velocity estimate
obj.velocity(tgt,:) = A\b;

end%loop over targets
end%end Velocity

function[A, b] = constraintMatrix(obj, Env, Nwk,...
Dat, Tgt,...
N, tgt, type, constraints)

%validate input attributes
validateattributes(obj,...

{’Geolocation.Analysis.Doppler4’},...
{’nonempty’},’’,’obj’)

validateattributes(Nwk, {’Geolocation.Network’},...
{’nonempty’},...
’’,’Nwk’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(Tgt, {’Geolocation.Target’},...
{’nonempty’},...
’’,’Tgt’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

134

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’’,’N’)

validatestring(type, {’FA’,’RF’},’’,’type’);
validateattributes(constraints,{’numeric’},...

{’nonempty’,’positive’,’integer’,’ncols’,2},...
’’,’constraints’)

[rows,˜] = size(constraints);
if rows < 3

error(’Too few constraints provided.’)
end

%use the first four constraints
[A1, b1] = ...

obj.constraintEquation(Env, Dat, Nwk, Tgt, N,...
tgt, constraints(1,1), constraints(1,2), type);

[A2, b2] = ...
obj.constraintEquation(Env, Dat, Nwk, Tgt, N,...
tgt, constraints(2,1), constraints(2,2), type);

[A3, b3] = ...
obj.constraintEquation(Env, Dat, Nwk, Tgt, N,...
tgt, constraints(3,1), constraints(3,2), type);

%pack them into a matrix
A = [A1;A2;A3];
b = [b1;b2;b3];

end

% Getters
%getVelocity--gets the velocity estimate for a target
%obj: an object of class Velocity
%n: target number
function[out] = getVelocity(obj, n)

out = obj.velocity(n,:);
end%end getVelocity

%getSpeed--gets the velocity estimate for a target
%obj: an object of class Velocity
%n: target number
function[out] = getSpeed(obj, n)

out = sqrt(dot(obj.velocity(n), obj.velocity(n)));
end%end getSpeed

135

end%end methods

methods(Static)
function[out] = ...

dopplerConstraintGraph(Nwk, Dat, T, tgt)
%validate the arguemtns
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(tgt, {’numeric’}, ...
{’nonempty’, ’scalar’, ’positive’,...
’<=’,Dat.n},’’,’tgt’)

validateattributes(T, {’numeric’}, ...
{’nonempty’, ’scalar’, ’>=’, 4, ’<=’, 4},’’,’T’)

if Nwk.nTowers < T
error([’Insufficient towers in’,...

’ network to support analysis.’])
end

%Determine the towers will be used for the
%analysis. Ensure
power = Dat.power(tgt,:);%get the power recieved

%at each tower
temp = sort(power, ’descend’);
%if the number of towers to consider is less than

% the total number avaliable
if T < Nwk.nTowers

temp = 0.5*(temp(T)+temp(T+1));
else

temp = min(temp);
end
thresh = min(Nwk.detectThreshold, temp);

%delete all of the towers which cannot hear the
%transmitter based on the detection threshold.
towers = 1:1:Nwk.nTowers;%start with the set of

%all towers
for n = Nwk.nTowers:-1:1%go backwards to make this

%strategy work

136

if power(n)<thresh%if insufficient recieved
%signal

towers(n) = [];%delete that tower index
end%end if

end%for each tower

%initialize a Graph object with the remaining
%towers
cGraph = Geolocation.Analysis.Graph(towers);
%compute and store the weights associated with each
%edge
tPairs = combnk(towers,2);
nTP = length(tPairs(:,1));
for p = 1:1:nTP

%the weight is 1 so no a priori information is
%used in selecting constraint equations
w = 1;
%store to the graph
setEdge(cGraph, tPairs(p,1), tPairs(p,2), w)

end%end loop over pairs

%Output the result
out = findTree(cGraph);

end
end%end abstract, static methods

end

3. Doppler4A
classdef Doppler4A < Geolocation.Analysis.Doppler

%Doppler4A Computes the estimated three-D velocity vector of a target
% This class provides methods to compute estimated
% velocity vectors for targets given their timing
% advance values are known or estimated and the center
% frequency of the transmitter is known or an unbiased
% estimate of same. This algorithm uses both constraint
% choice and an unweighted Doppler Constraint Graph.
%
% Properties:
% velocity: N (x) 3 matrix of velocity estimates
% N: the assumed refractivity in ppm

137

% T: the number of towers to consider in the solution.
% type: use frequency adjust information (’FA’) or raw
% recieved frequency (’RF’).
%
% Methods:
% [obj] = Doppler4A(Dat, Env, Nwk, Tgt, N, T, type)
% Dat: An object of class Data
% Env: An object of class Environment
% Nwk: An object of class Network
% Tgt: an object of class Target (only used to get the
% origional center frequency)
% N: the assumed refractivity
% T: the number of towers to consider in the solution
% type: use frequency adjust information (’FA’) or raw
% recieved frequency (’RF’).
% obj: an object of class Doppler4B
%
% [A, b] = constraintMatrix(obj, Env, Nwk, Dat, Tgt,...
% N, tgt, type, constraints)
% obj: an object of class Doppler4A
% Env: An object of class Environment
% Nwk: An object of class Network
% Dat: An object of class Data
% Tgt: an object of class Target (only used to get the
% origional center frequency)
% N: the assumed refractivity
% tgt: the index number of the target or the
% observation of the target
% type: use frequency adjust information (’FA’) or raw
% recieved frequency (’RF’).
% constraints: a Nx2 matrix of the pairs of towers
% which describe the possible constraints.
% A: a 3x3 matrix
% b: a 3x1 column vector
%
% [out] = dopplerConstraintGraph(Nwk, Dat, T, tgt,
% type) NOTE: Static
% Nwk: An object of class Network
% Dat: An object of class Data
% T: the number of towers to consider in the solution
% tgt: the index number of the target or the
% observation of the target

138

% type: use frequency adjust information (’FA’) or raw
% recieved frequency (’RF’).

properties (SetAccess = private)
velocity
N
T = 4
type

end%end properties

methods
% Constructor
%Velocity--sets up an empty velocity argument
%Dat: an object of class Data
function[obj] = Doppler4A(Dat, Env, Nwk, Tgt, N,...

T, type)
%validate input arguments
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(Dat, ...
{’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(Tgt, ...
{’Geolocation.Target’},...
{’nonempty’},...
’’,’Tgt’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’’,’N’)

validateattributes(T, {’numeric’}, ...
{’nonempty’, ’scalar’, ’>=’, 4},’’,’T’)

validatestring(type, {’FA’,’RF’},’’,’type’);
if Nwk.nTowers < T

error([’Insufficient towers in’,...
’ network to support analysis.’])

end

139

%store the validated inputs
obj.N = N;
obj.T = T;
obj.type = type;

%initialize the position estimates
obj.velocity = zeros(Dat.n,3);%holds results of
%frequency

%for each target
for tgt = 1:1:Dat.n

%find a set of constraints
constraints = ...

obj.dopplerConstraintGraph(Nwk, Dat, T, tgt);

%form the constraint matrix and vector
[A,b] = constraintMatrix(obj, ...

Env, Nwk, Dat, Tgt,...
N, tgt, type, constraints);

%solve for the velocity estimate
obj.velocity(tgt,:) = A\b;

end%loop over targets
end%end Velocity

function[A, b] = constraintMatrix(obj, Env, Nwk,...
Dat, Tgt,...
N, tgt, type, constraints)

%validate input attributes
validateattributes(obj,...

{’Geolocation.Analysis.Doppler4A’},...
{’nonempty’},’’,’obj’)

validateattributes(Nwk, {’Geolocation.Network’},...
{’nonempty’},...
’’,’Nwk’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

140

validateattributes(Tgt, {’Geolocation.Target’},...
{’nonempty’},...
’’,’Tgt’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’’,’N’)

validatestring(type, {’FA’,’RF’},’’,’type’);
validateattributes(constraints,{’numeric’},...

{’nonempty’,’positive’,’integer’,’ncols’,2},...
’’,’constraints’)

[rows,˜] = size(constraints);
if rows < 3

error(’Too few constraints provided.’)
end

%Initialize A and B
A = zeros(3,3);
b = zeros(3,1);

%compute the set of rows of A
tempA = zeros(length(constraints(:,1)),3);
tempB = zeros(length(constraints(:,1)),1);
for c = 1:1:length(constraints(:,1))

[tempA(c,:),tempB(c,1)] = ...
obj.constraintEquation(...

Env, Dat, Nwk, Tgt, N, tgt,...
constraints(c,1), constraints(c,2), obj.type);

end%end loop over the possible constraints

%pick the two most orthogonal rows
temp = combnk(1:1:length(constraints(:,1)),2);
tempIP = ...

zeros(nchoosek(length(constraints(:,1)),2),1);
for c = 1:1:length(temp(:,1))

tempIP(c) = ...
abs(dot(tempA(temp(c,1),:),...
tempA(temp(c,2),:)));

end%end loop over the pairwise combinations of
%constraints

[˜,tempIP] = min(tempIP);%which pair has the

141

%lowest dot product
tempIP = temp(tempIP,:);%get constraints are most

%orthogonal

%pack these rows into the first two rows of A,
%store the corresponding parts of b
A(1,:) = tempA(tempIP(1),:);
A(2,:) = tempA(tempIP(2),:);
b(1) = tempB(tempIP(1));
b(2) = tempB(tempIP(2));

%pick the vector which is most orthogonal to these
%first two
tempC = cross(A(1,:), A(2,:));%the vector

%orthogonal to the first two
tempCP = zeros(length(constraints(1,:)),1);
for c = 1:1:length(constraints(:,1))

tempCP(c,1) = abs(dot(tempA(c,:),tempC));
end%test each constraint. I choose to retest the

%two I already have because I know they will be
%zero

[˜,tempCP] = max(tempCP);%figure out which one is
%most orthogonal

A(3,:) = tempA(tempCP,:);%store this vector as the
%third row of A

b(3) = tempB(tempCP);%store the entry of b vector
end

end

methods(Static)
function[out] = dopplerConstraintGraph(Nwk, Dat, T,...

tgt)
%validate the arguemtns
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(tgt, {’numeric’}, ...
{’nonempty’, ’scalar’, ’positive’,...
’<=’,Dat.n},’’,’tgt’)

142

validateattributes(T, {’numeric’}, ...
{’nonempty’, ’scalar’, ’>=’, 4},’’,’T’)

if Nwk.nTowers < T
error([’Insufficient towers in’,...

’ network to support analysis.’])
end

%Determine the towers will be used for the
%analysis. Ensure
power = Dat.power(tgt,:);%get the power recieved

%at each tower
temp = sort(power, ’descend’);
%if the number of towers to consider is less than
%the total number avaliable
if T < Nwk.nTowers

temp = 0.5*(temp(T)+temp(T+1));
else

temp = min(temp);
end
thresh = min(Nwk.detectThreshold, temp);

%delete all of the towers which cannot hear the
%transmitter based on the detection threshold.
towers = 1:1:Nwk.nTowers;%start with the set of

%all towers
for n = Nwk.nTowers:-1:1%go backwards to make this

%strategy work
if power(n)<thresh%if insufficient recieved

%signal
towers(n) = [];%delete that tower index

end%end if
end%for each tower

%initialize a Graph object with the remaining
%towers
cGraph = Geolocation.Analysis.Graph(towers);
%compute and store the weights associated with
%each edge
tPairs = combnk(towers,2);
nTP = length(tPairs(:,1));
for p = 1:1:nTP

%the weight is 1 so no a priori information is

143

%used in selecting constraint equations
w = 1;
%store to the graph
setEdge(cGraph, tPairs(p,1), tPairs(p,2), w)

end%end loop over pairs

%Output the result
out = findTree(cGraph);

end
end%end abstract, static methods

end

4. Graph
classdef Graph < handle

%Graph A class that provides a definition of and basic
%operations on a graph.
% This class provides properties which enable definion
% of a graph describing the (weighted)
% relationships--edges--between a set of component
% members (vertices).
%
%Inputs:
% vertex: a vector of numeric serial numbers of the
% vertices of the graph. There must be at least two
% vertices and their serial numbers must be positive
% integers. These are assigned index numbers internally
% based on their position in the vector. Vector serial
% numbers should be unique. Immutable.
%
% edge: If given in the constructor, an N choose 2
% vector of weights for the edges where N is the number
% of vertices. A weight of zero is taken as ‘‘no edge".
% Private.
%
%Properties:
% vertex: the list of inputted vertices sorting in
% order from least to greatest.
% edge: the list of edge weights. Zero means no edge.
%
%Methods (Public):

144

% Graph(vertex, edge): constructs an object of class
% graph. The vertex argument is required, edge is
% optional. If no edge argument is provided, then the
% edge property is set to a zero vector.
%
% setEdge(obj, vertex1, vertex2, weight): a set method
% which allows the user to specify the weight for a
% single edge. Useful is the set of edges is sparse.
%
% getEdge(obj, vertex1, vertex2): a get method which
% returns the weight of the edge specified by vertex1
% and vertex2.
%
% findTree(obj): returns a maximum weight spanning tree
% on the graph specified.
%
%
%Methods (Static):
% treeMerge(vertex1, vertex2, subtree1, subtree2,
% vertexList): This function provides a way to merge
% two trees into a single, larger tree. It takes the
% arguments:
% vertex1: the first vertex in the bridging edge
% vertex2: the second vertex in the bridging edge
% subtree1: the edge list of the first subtree to merge
% subtree2: the edge list of the second subtree to
% merge vertexList: the master list of vertex
% assignments
%
% It returns:
% edgeList: the new edge list for the merged tree.
% vertexList: the new list of vertex assignments.
%
% NOTE: This function assumes that the vertices are
% labelled 1,2,...,N.

properties (SetAccess = immutable)
vertex

end

properties (SetAccess = private)
edge

145

end

%Internal Properties
properties (SetAccess = immutable, Hidden)

edgeMap %N choose 2 (x) 4 array. The first two columns
% are the vertices which define an edge using position
% labels. The last two columns hold the corresponding
% serial numbers.
vertexMap %the N (x) 2 array with the internal
% indicies in the first column and the vertex labels in
% the second column.

end

methods
function[obj] = Graph(vertex, edge)

%validate the attributes of the vertex argument
validateattributes(vertex, {’numeric’},...

{’vector’, ’integer’, ’positive’},...
’’,’vertex’)

%store if vertex passes validation
obj.vertex = sort(vertex, ’ascend’);

%check the number of arguments
switch nargin

case 1
%initialize the edge vector to the null edge
%set (no edges)
obj.edge = zeros(nchoosek(...

length(obj.vertex),2),1);
case 2

%validate the dimensions of the edge argument
validateattributes(edge, {’numeric’}, ...

{’numel’, nchoosek(...
length(obj.vertex), 2),’vector’},...
’’,’edge’)

%store the edge set provided
obj.edge = edge;

end%end switch nargs
%set up the edge map
obj.edgeMap(:,1:2) = ...

flipud(combnk(1:1:length(obj.vertex),2));
obj.edgeMap(:,3:4) = obj.edgeMap(:,1:2);

146

for row = 1:1:nchoosek(length(obj.vertex),2)
%overwrite the third and forth column entries
%with the appropriate vertex serial number
obj.edgeMap(row,3) = ...

obj.vertex(obj.edgeMap(row,1));
obj.edgeMap(row,4) = ...

obj.vertex(obj.edgeMap(row,2));
end%end for rows

%set up the vertex map
obj.vertexMap(:,1) = 1:1:length(obj.vertex);
obj.vertexMap(:,2) = obj.vertexMap(:,1);
for row = 1:1:length(obj.vertex)

obj.vertexMap(row,2) = ...
obj.vertex(obj.vertexMap(row,1));

end%end for rows
end%end Graph

function[] = setEdge(obj, vertex1, vertex2, weight)
%validate attributes
validateattributes(vertex1, {’numeric’},...

{’scalar’, ’positive’, ’integer’},’’,’vertex1’)
validateattributes(vertex2, {’numeric’},...

{’scalar’, ’positive’, ’integer’},’’,’vertex1’)
validateattributes(weight, {’numeric’}, ...

{’scalar’}, ’’, ’weight’)
if vertex1 == vertex2

error(’vertex1 cannot equal vertex2.’)
end

%determine the lower and upper vertex serial number
v1 = min(vertex1, vertex2);
v2 = max(vertex1, vertex2);

%sort the edgeMap so that it is ordered by the
%vertex serial numbers
temp = zeros(length(obj.edgeMap(:,1)),2);
for row = 1:1:length(obj.edgeMap(:,1))

temp(row,:) = ...
sort(obj.edgeMap(row,3:4), ’ascend’);

end%for row

147

%now search through the temporary edge map to find
%the indices corresponding to the vertex selected
[i1,˜] = find(temp(:,1) == v1);
[i2,˜] = find(temp(i1,2) == v2);
%convert i2 from a relative index to an absolute
%index. The decrement is an offset required to
%handle the quirks of counting indices.
i2 = i1 + i2 - 1;

%convert the found vertex serial numbers into
%corresponding serial numbers
i1 = find(obj.vertex==temp(i1(1),1));
i2 = find(obj.vertex==temp(i2(1),2));

%Now find the corresponding entry in the first two
%columns of the obj.edgeMap property
v1 = min(i1, i2);
v2 = max(i1, i2);
[i1,˜] = find(obj.edgeMap(:,1) == v1);
[i2,˜] = find(obj.edgeMap(i1,2) == v2);
ind = i1 + i2 - 1;

%Insert the weight into the edge property
obj.edge(ind(1)) = weight;

end%end setEdge

%Write a getEdge function which takes obj, v1, v2 and
%returns the weight.
function[out] = getEdge(obj, vertex1, vertex2)

%validate attributes
validateattributes(vertex1, {’numeric’},...

{’scalar’, ’positive’, ’integer’},’’,’vertex1’)
validateattributes(vertex2, {’numeric’},...

{’scalar’, ’positive’, ’integer’},’’,’vertex1’)
if vertex1 == vertex2

error(’vertex1 cannot equal vertex2.’)
end

%determine the lower and upper vertex serial number
v1 = min(vertex1, vertex2);
v2 = max(vertex1, vertex2);

148

%sort the edgeMap so that it is ordered by the
%vertex serial numbers
temp = zeros(length(obj.edgeMap(:,1)),2);
for row = 1:1:length(obj.edgeMap(:,1))

temp(row,:) = ...
sort(obj.edgeMap(row,3:4), ’ascend’);

end%for row

%now search through the temporary edge map to find
%the indices corresponding to the vertex selected
[i1,˜] = find(temp(:,1) == v1);
[i2,˜] = find(temp(i1,2) == v2);
%convert i2 from a relative index to an absolute
%index. The decrement is an offset required to
%handle the quirks of counting indices.
i2 = i1 + i2 - 1;

%convert the found vertex serial numbers into
%corresponding serial numbers
i1 = find(obj.vertex==temp(i1(1),1));
i2 = find(obj.vertex==temp(i2(1),2));

%Now find the corresponding entry in the first two
%columns of the obj.edgeMap property
v1 = min(i1, i2);
v2 = max(i1, i2);
[i1,˜] = find(obj.edgeMap(:,1) == v1);
[i2,˜] = find(obj.edgeMap(i1,2) == v2);
ind = i1 + i2 - 1;

%retrieve the edge weight
out = obj.edge(ind(1));

end%getEdge

function[edgeList] = findTree(obj)
%validate attributes
validateattributes(obj, ...

{’Geolocation.Analysis.Graph’},{’nonempty’})

%set up the vertexAssignment vector
vertexAssignment = zeros(length(obj.vertex),1);

149

%set up the full range of possible subgraphs. The
%first index is the edge number, the second index
%is the vertex number in that edge, and the third
%index is the subgraph number
subGraph = ...

NaN(length(obj.vertex)-1,2,length(obj.vertex));

%number of edges currently in each subgraph
sgEdgeCount = zeros(length(obj.vertex), 1);

%keep track of the next new subgraph to create
sgCount = 1;% start at one since at least one
% subgraph will be used

%make the augmented edge list. This is a working
%copy.
augEdge(:,1:2) = ...

flipud(combnk(1:1:length(obj.vertex),2));
augEdge(:,3) = obj.edge;

%make a list of possible bride edges
bridges = zeros(1,3);
numBridges = 0;

%find the highest weight edge. This will be the
%base edge for the tree.
temp = max(obj.edge);%find the max edge weight
temp = find(obj.edge == temp, 1);%find the first
%edge with this weight add it to subgraph 1 and
%assign its vertices in the vertexAssignment vector
subGraph(1,:,1) = augEdge(temp, 1:2);

%increment the counter for the number of edges in
%the first subgraph
sgEdgeCount(1) = 1;

%assign the vertices now in use to the first
%subgraph
vertexAssignment(augEdge(temp, 1)) = sgCount;
vertexAssignment(augEdge(temp, 2)) = sgCount;

%reset the edge weight to -inf. Note that I can’t

150

%delete the edge because it destroys the indexing
%scheme.
augEdge(temp,3) = -inf;

%while the tree is not yet formed.
while (max(augEdge(:,3)) ˜= -inf)&&...

(max(augEdge(:,3)) ˜= 0)
%find the highest weight edge
temp = max(augEdge(:,3));
temp = find(augEdge(:,3) == temp, 1);

%compute the number of edges in the proposed new
%edge which are already in use.
inUse = 0; %assume either is in use
%check if the first vertex is in use
if vertexAssignment(augEdge(temp, 1)) ˜=0

inUse = inUse+1;%increment the number of
%vertices in use

%save the SG
tempSG = vertexAssignment(augEdge(temp, 1));

end
%check if the second vertex is in use
if vertexAssignment(augEdge(temp, 2)) ˜=0

inUse = inUse+1;
tempSG = vertexAssignment(augEdge(temp, 2));

end
%if neither edge is in use, start a new subgraph
%and increment sgCount
if inUse == 0

sgCount = sgCount+1;%set up the new subgraph
sgEdgeCount(sgCount) =...

sgEdgeCount(sgCount)+1;%indicate the
%first edge is now in use;
subGraph(...

sgEdgeCount(sgCount), :, sgCount) = ...
augEdge(temp, 1:2);

%assign the vertices to this new subgraph
vertexAssignment(augEdge(temp, 1)) = sgCount;
vertexAssignment(augEdge(temp, 2)) = sgCount;
%if has only one shared vertex, add it to
%that subgraph and increment that subgraph’s
%edge count

151

elseif inUse == 1
sgEdgeCount(tempSG) = sgEdgeCount(tempSG)+1;
subGraph(sgEdgeCount(tempSG),:,tempSG) =...

augEdge(temp,1:2);
vertexAssignment(augEdge(temp, 1)) = tempSG;
vertexAssignment(augEdge(temp, 2)) = tempSG;
%if both of its vertices are in use, then add
%it to bridges and delete it from the augEdge
%list. Do not keep as a bridge an edge whose
%vertices are in a single subgraph

elseif (inUse == 2)&&...
(vertexAssignment(augEdge(temp, 1)) ˜=...
vertexAssignment(augEdge(temp, 2)))

%increment the number of bridges
numBridges = numBridges + 1;
%add to bridge list
bridges(numBridges,:) = augEdge(temp,:);
%if both vertices are in use in the same
%subgraph

elseif (inUse == 2)&&...
(vertexAssignment(augEdge(temp, 1)) ==...
vertexAssignment(augEdge(temp, 2)))

%do nothing on purpose
end
%once the edge has been handled, reset its
%weight to -inf.
augEdge(temp,3) = -inf;

end%end while there are still edges to be checked

%while there is more than one subgraph, merge
%subgraphs together
while sum(sum(isnan(subGraph(:,1:2,1)))) > 0

%Find the edge in bridges with the highest
%weight
bridgeInd = find(bridges(:,3) ==...

max(bridges(:,3)), 1, ’first’);
%Identify the two subgraphs which it bridges
v1 = min(bridges(bridgeInd, 1:2));
v2 = max(bridges(bridgeInd, 1:2));
sg1 = vertexAssignment(v1);
sg2 = vertexAssignment(v2);
%Only use the bridge if the two subgraphs are

152

%different.
if sg1 ˜= sg2

%call obj.treeMerge to merge the subgraphs
[tempA, vertexAssignment] = ...

Geolocation.Analysis.Graph.treeMerge(...
v1, v2, ...
subGraph(1:sgEdgeCount(sg1),:,sg1),...
subGraph(1:sgEdgeCount(sg2),:,sg2), ...
vertexAssignment);

subGraph(1:1:length(tempA(:,1)),...
1:2,min(sg1,sg2)) = tempA;

%update the number of edges in SG1
sgEdgeCount(min(sg1,sg2)) =...

sgEdgeCount(sg1)+sgEdgeCount(sg2)+1;
%reset the number of edges assigned to sg2 to
%zero
sgEdgeCount(max(sg1,sg2)) = 0;

end
%reset the weight of the used bridge to -inf
bridges(bridgeInd,3) = -inf;

end%end while merging subgraphs

%output the edgeList
edgeList = subGraph(:,1:2,1);
%convert the elements of the edge list to their
%equivilent origional vertices
for r = 1:1:length(edgeList(:,1))

for c = 1:1:2
edgeList(r,c) = obj.vertex(edgeList(r,c));

end
end

end%end findTree
end

methods(Static)
function[edgeList, vertexList] = ...

treeMerge(vertex1, vertex2,...
subtree1, subtree2, vertexList)

%validate attributes
validateattributes(vertex1, {’numeric’}, ...

{’integer’, ’nonempty’, ’nonnan’}, ’’,...
’vertex1’)

153

validateattributes(vertex2, {’numeric’}, ...
{’integer’, ’nonempty’, ’nonnan’}, ’’,...
’vertex2’)

validateattributes(subtree1, {’numeric’}, ...
{’2d’, ’ncols’, 2, ’nonnan’}, ’’, ’subtree1’)

validateattributes(subtree2, {’numeric’}, ...
{’2d’, ’ncols’, 2, ’nonnan’}, ’’, ’subtree2’)

validateattributes(vertexList, {’numeric’},...
{’vector’, ’nonempty’},’’, ’vertexList’)

%find the tree to be merged into and the tree to be
%merged I am choosing to merge down in indices.
destTree = ...

min([vertexList(vertex1), vertexList(vertex2)]);
mergeTree = ...

max([vertexList(vertex1), vertexList(vertex2)]);
for ind = find(vertexList == mergeTree)%for each

%vertex belonging to the tree to be merged,
%reassign it to the destination tree.
vertexList(ind) = destTree;

end
%add the bridge edge
subtree1 = [subtree1; vertex1, vertex2];

%Make the output edgeList
for row = 1:1:length(subtree1(:,1))

subtree1(row, :) = sort(subtree1(row,:),...
’ascend’);

end%end for row
for row = 1:1:length(subtree2(:,1))

subtree2(row, :) = sort(subtree2(row,:),...
’ascend’);

end%end for row
edgeList = sortrows([subtree1 ; subtree2],[1,2]);

end%end treeMerge
end%Static functions

end

154

5. PositionError Class
classdef PositionError < handle

%POSITIONERROR Provides analysis methods for estimated positions
% This class, given objects of class Target and any
% class which has a position property provides tools to
% analyse the structure of the errors.

properties(SetAccess = private)
error;%N (x) 3 matrix of raw error vectors
L2;%L2 norm of the error vectors
L1;%L1 norm of the error vectors
Linf;%L0 norm of the error vectors

end%end properties

methods
%% Constructor
%PositionError--creates and initializes an object of
%class PositionError
%Tgt: An object of Class Target containing the true
%data
%Est: Any object which contains a property position
%which contains the estimated positions and a property
%N the assumed refractivity of the environment
function[obj] = PositionError(Tgt, Est)

obj.error = Tgt.position - Est.position;
obj.L2 = ...

sqrt(diag(obj.error*transpose(obj.error)));
obj.L1 = ...

transpose(sum(transpose(abs(obj.error))));
obj.Linf = ...

transpose(max(transpose(abs(obj.error))));
end%end PositionError

%% Setter

%% Getter

%% Plot Methods
%l2histogram--plots the histogram of the L2 errors
%obj: an object of class PositionError
%Est: any object of class which contains the assumed

155

%refractivity
%Env: an object of class Environment
%bins: number of bins to use or a vector of bins
%newFig: boolean to indicate whether or not to write
%to a new figure
function[] = l2histogram(obj, Est, Env, bins, newFig)

%compute the proportions in each bin
[n, xout] = hist(obj.L2, bins);
n = n/sum(n);

%start a new figure as appropriate
if newFig == true

figure()
end

%create the histogram
bar(xout, n, 1)
xlabel(’Error (Meters)’)
ylabel(’Proportion’)
title({’Histogram of L2 Errors’;

[’True Refractivity: ’, ...
num2str(round(getRefractivity(Env)))];
[’Assumed Refractivity: ’, ...
num2str(round(Est.N))]})

end%end l2histogram

%l1histogram--plots the histogram of the L2 errors
%obj: an object of class PositionError
%Est: any object of class which contains the assumed
%refractivity
%Env: an object of class Environment
%bins: number of bins to use or a vector of bins
%newFig: boolean to indicate whether or not to write
%to a new figure
function[] = l1histogram(obj, Est, Env, bins, newFig)

%compute the proportions in each bin
[n, xout] = hist(obj.L1, bins);
n = n/sum(n);

%start a new figure as appropriate
if newFig == true

figure()

156

end

%create the histogram
bar(xout, n, 1)
xlabel(’Error (Meters)’)
ylabel(’Proportion’)
title({’Histogram of L1 Errors’;

[’True Refractivity: ’, ...
num2str(round(getRefractivity(Env)))];
[’Assumed Refractivity: ’, ...
num2str(round(Est.N))]})

end%end l1histogram

%linfhistogram--plots the histogram of the L2 errors
%obj: an object of class PositionError
%Est: any object of class which contains the assumed
%refractivity
%Env: an object of class Environment
%bins: number of bins to use or a vector of bins
%newFig: boolean to indicate whether or not to write
%to a new figure
function[] = linfhistogram(obj, Est, Env, bins,...

newFig)
%compute the proportions in each bin
[n, xout] = hist(obj.Linf, bins);
n = n/sum(n);

%start a new figure as appropriate
if newFig == true

figure()
end

%create the histogram
bar(xout, n, 1)
xlabel(’Error (Meters)’)
ylabel(’Proportion’)
title({’Histogram of L-infinity Errors’;

[’True Refractivity: ’, n...
um2str(round(getRefractivity(Env)))];
[’Assumed Refractivity: ’, ...
num2str(round(Est.N))]})

end%end linfhistogram

157

end%end methods

end

6. TDOA Class
classdef TDOA

%TDOA Provides common functionality and interface for the
%time differnece of arrival set of classes.
% This class defines a set of common parameters and
% functions which are either to be implimented across
% all TDOA classes.
%
%The abstract properties defined in this class are
% position--the set of position estimates
% N--the refractivity used for the analysis
% T--the number of towers to be considered
%
%The abstract methods defined in this class are
%[A, b] = constraintMatrix(obj, Env, Nwk, Dat, N, tgt,
%constraints)
% obj: an object of appropriate class
% Env: an object of class Environment
% Nwk: an object of class Network
% Dat: an object of class Data
% N: refractivity in ppm
% tgt: the target to consider
% constraints: the matrix of tower pairs which
% represent independant constraints
% A: the matrix part of the matrix equation
% b: the vector of constants
%
%The concrete function defined in this class is
%[A, b] = constraintEquation(i,j,k,l, Net, Dat, Env, N,
%t)
%i, j, k, l: indices of the four towers used in the
%constraint
%Net: an object of class Network
%Dat: an object of class Data
%Env: an object of class Env
%N: the assumed refractivity in ppm

158

%t: target number
%A--row of the matrix
%b--entry in the column vector

properties(Abstract, SetAccess = private)
position
N
T

end

methods(Abstract)
[A, b] = constraintMatrix(obj, ...

Env, Nwk, Dat, N, tgt, constraints)
end

methods(Abstract, Static)
[out] = tdoaConstraintGraph(Nwk, Dat, T, tgt)

end

methods(Static)
function[A, b] = constraintEquation(i,j,k,l, Net,...

Dat, Env, N, t)
%get the assumed speed of light and refractive
%index
n = ppm2n(N);
cn = Env.c/n;

%Get the times
time = getTargetTA(Dat, t);
ti = time(i);
tj = time(j);
tk = time(k);
tl = time(l);

%Make the coefficient
coef = (tj - ti)/(tl - tk);

%make A
%First get the four vectors
Pi = getTower(Net, i);
Pj = getTower(Net, j);
Pk = getTower(Net, k);

159

Pl = getTower(Net, l);
%Then make the row of A
A=2*(coef*(Pl - Pk) - (Pj - Pi));

%make b
%First make the four magnitudes
normPi = dot(Pi, Pi);
normPj = dot(Pj, Pj);
normPk = dot(Pk, Pk);
normPl = dot(Pl, Pl);
%Then make the j-i part
partji = normPj - normPi - ...

(Net.tau*cn)ˆ2*(tjˆ2 - tiˆ2);
%Next make the l-k part
partlk = coef*...

(normPl - normPk - ...
(Net.tau*cn)ˆ2*(tlˆ2 - tkˆ2));

%finally, make b
b=partlk - partji;

end%end constraintEquation
end

end

7. TDOA5 Class
classdef TDOA5 < Geolocation.Analysis.TDOA

%TDOA5 Time Difference of Arrival 3-D Geolocation using Five Recievers
% TDOA5 impliments the closed form algorithm given in
% Bakhoum 2006 to solve the passive localization
% problem in three dimensions using Time Difference of
% Arrival. Properties:
% position: an N (x) 3 matrix of target estimated
% position
% N: the assumed refractivity of the medium
% T: the number of towers to use in forming the
% estimate
%
% Functions . . .
%
% TDOA5(Env, Net, Dat, N, T, print): returns an object

160

% of class TDOA5. Inputs:
% Env: an object of class Environment
% Net: an object of class Network
% Dat: an object of class Data
% N: Assumed refractivity of the medium (ppm)
% T: the number of towers to use in forming the
% estimate
% print: a Boolean indicating whether or not to print a
% status message.
%
% tdoaConstraintGraph(Nwk, Dat, T, tgt): returns an
% edge list for the TDOA constraint graph. Inputs:
% Nwk: an object of class Network
% Dat: an object of class Data
% T: the number of towers to use in forming the
% estimate. Must be 5.
% tgt: the target number (or the observation of the
% target) for which to compute the constraint graph.
%
% constraintMatrix(obj, Env, Nwk, Dat, N, tgt,
% constraints): returns a matrix A and a vector b with
% the linear constraints. Inputs:
% obj: an object of class TDOA5B
% Env: an object of class Environment
% Nwk: an object of class Network
% Dat: an object of class Data
% N: Assumed refractivity of the medium (ppm)
% tgt: the target number (or the observation of the
% target) for which to compute the constraint graph.
% constraints: an edge list of the possible constraints
% from which to choose.

properties(SetAccess = private)
position%N (x) 3 matrix of target estimated position
N;%the assumed refractivity
T = 5;%the number of towers to consider. Fixed at
%five to conform
%with Bakhoum’s algorithm.

end%End Properties

methods
%% Constructor

161

%TDOA5--Five Reciever Solution in 3D using Bakhoum
%2006’s Algorith
%Env: an object of class Environment
%Net: an object of class Network
%Dat: an object of class Data
%N: Assumed refractivity of the medium
function[obj] = TDOA5(Env, Net, Dat, N)

%validate attributes
validateattributes(Env, ...

{’Geolocation.Environment’},...
{’nonempty’},’’,’Env’)

validateattributes(Net, {’Geolocation.Network’},...
{’nonempty’},’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},’’,’Dat’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

%convert N from ppm to refractive index
obj.N = N;

%preallocate the position matrix
pos = zeros(Dat.n, 3);

%for each target compute the position estimate
for t = 1:1:Dat.n

%first break the ties using the spanning tree
%algorithm. Set all weights to one exept of
%there is a tie.
pairs = ...

Geolocation.Analysis. ...
TDOA5.tdoaConstraintGraph(...
Net, Dat, obj.T, t);

%form the constraint matrix
[A,b] = ...

constraintMatrix(obj, Env, Net, Dat, N, t, pairs);

%solve for the unknown position P = A/b
P0 = A\b;

%take the transpose of P and write it to the

162

%correct row of the position matrix
pos(t,:) = transpose(P0);

end%end loop over targets

%write out
obj.position = pos;

end%end TDOA5

% Getters
function[out] = getPosition(obj, n)

out = obj.position(n,:);
end%end getPosition

function[A, b] = ...
constraintMatrix(obj, Env, Nwk, Dat, N, tgt,...
constraints)

%validate inputs
validateattributes(obj, ...

{’Geolocation.Analysis.TDOA5’},...
{’nonempty’},’’,’obj’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},’’,’Env’)

validateattributes(Nwk, {’Geolocation.Network’},...
{’nonempty’},’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},’’,’Dat’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

validateattributes(constraints, {’numeric’},...
{’nonempty’,’ncols’,2,’integer’,’positive’},...
’’,’constraints’)

%use the first five independant constraints
[A1, b1] = obj.constraintEquation(...

constraints(2,1), constraints(2,2),...
constraints(1,1), constraints(1,2),...
Nwk, Dat, Env, N, tgt);

163

[A2, b2] = obj.constraintEquation(...
constraints(3,1), constraints(3,2),...
constraints(1,1), constraints(1,2),...
Nwk, Dat, Env, N, tgt);

[A3, b3] = obj.constraintEquation(...
constraints(4,1), constraints(4,2),...
constraints(1,1), constraints(1,2),...
Nwk, Dat, Env, N, tgt);

%pack the three equations into a matrix
A = [A1;A2;A3];
b = [b1;b2;b3];

end%end constraint matrix

end%end methods

methods(Static)
function[out] = tdoaConstraintGraph(Nwk, Dat, T, tgt)

%validate inputs
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},’’,’Nwk’)
validateattributes(Dat, {’Geolocation.Data’},...

{’nonempty’},’’,’Dat’)
validateattributes(T, {’numeric’}, ...

{’integer’, ’>=’, 5, ’<=’, 5},...
’’, ’T’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

if T < Nwk.nTowers
%Determine the towers will be used for the
%analysis. Ensure
power = Dat.power(tgt,:);%get the power

%recieved at each tower
temp = sort(power, ’descend’);
temp = 0.5*(temp(T)+temp(T+1));
thresh = min(Nwk.detectThreshold, temp);

%delete all of the towers which cannot hear the
%transmitter based on the detection threshold.
towers = 1:1:Nwk.nTowers;%start with the set of

164

%all towers
for n = Nwk.nTowers:-1:1%go backwards to make

%this strategy work
if power(n)<thresh%if insufficient recieved

%signal
towers(n) = [];%delete that tower index

end%end if
end%for each tower

else%if there are exactly 5 towers in the system
towers = 1:1:Nwk.nTowers;

end
%set of the graph
graph = Geolocation.Analysis.Graph(towers);
%compute all possible edges
edges = combnk(towers,2);
%get the timing advance values associated with this
%target
temp = getTargetTA(Dat, tgt);

%For each possible edge . . .
for ind = 1:1:length(edges(:,1))

%set the weight. If the time difference is not
%zero, onee
if temp(edges(ind,1)) ˜= temp(edges(ind,2))

setEdge(graph, edges(ind,1), edges(ind,2),1)
else%edge weight is zero

setEdge(graph,edges(ind,1), edges(ind,2),0)
end%end set weight on edge ind

end%end loop over possible edges
out = findTree(graph);%find a tree

end%end tdoaConstraintGraph
end%end static methods

end %end TDOA5

8. TDOA5A Class
classdef TDOA5A < Geolocation.Analysis.TDOA

%TDOA5A Time Difference of Arrival 3-D Geolocation using
%Five Recievers
% TDOA5A impliments a modified version of the closed

165

% form algorithm given in Bakhoum 2006 to solve the
% passive localization problem in three dimensions
% using Time Difference of Arrival. The modifications
% are the incorporation of an unweighted constraint
% choice algorithm. Properties:
% position: an N (x) 3 matrix of target estimated
% position
% N: the assumed refractivity of the medium
% T: the number of towers to use in forming the
% estimate
%
% Functions . . .
%
% TDOA5A(Env, Net, Dat, N, T, print): returns an object
% of class TDOA5B. Inputs:
% Env: an object of class Environment
% Net: an object of class Network
% Dat: an object of class Data
% N: Assumed refractivity of the medium (ppm)
% T: the number of towers to use in forming the
% estimate
% print: a Boolean indicating whether or not to print a
% status message.
%
% getPosition(obj): returns the estimated position of a
% specified target. Inputs:
% obj: an object of class TDOA5B
% n: target number
%
% tdoaConstraintGraph(Nwk, Dat, T, tgt): returns an
% edge list for the TDOA constraint graph. Inputs:
% Nwk: an object of class Network
% Dat: an object of class Data
% T: the number of towers to use in forming the
% estimate (>=5)
% tgt: the target number (or the observation of the
% target) for which to compute the constraint graph.
%
% constraintMatrix(obj, Env, Nwk, Dat, N, tgt,
% constraints): returns a matrix A and a vector b with
% the linear constraints. Inputs:
% obj: an object of class TDOA5B

166

% Env: an object of class Environment
% Nwk: an object of class Network
% Dat: an object of class Data
% N: Assumed refractivity of the medium (ppm)
% tgt: the target number (or the observation of the
% target) for which to compute the constraint graph.
% constraints: an edge list of the possible constraints
% from which to choose.

properties(SetAccess = private)
position%N (x) 3 matrix of target estimated position
N;%the assumed refractivity
T = 7;

end%End Properties

methods
% Constructor
%TDOA5A--Five Reciever Solution in 3D using Bakhoum
%2006’s Algorith
%Env: an object of class Environment
%Net: an object of class Network
%Dat: an object of class Data
%N: Assumed refractivity of the medium
function[obj] = TDOA5A(Env, Net, Dat, N, T, print)

%validate attributes
validateattributes(Env, ...

{’Geolocation.Environment’},...
{’nonempty’},’’,’Env’)

validateattributes(Net, {’Geolocation.Network’},...
{’nonempty’},’’,’Net’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},’’,’Dat’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(T, {’numeric’}, ...
{’integer’, ’>=’, 5, ’<=’, Net.nTowers},...
’’, ’T’)

validateattributes(print, {’logical’},...
{’nonempty’},’’,’print’)

%convert N from ppm to refractive index
obj.N = N;

167

%store T
obj.T = T;

%preallocate the position matrix
obj.position = zeros(Dat.n, 3);

%for each target compute the position estimate
for t = 1:1:Dat.n

%compute a tree from the TDOA constraint ...
graph in adjacency
%list form
tree = ...

Geolocation.Analysis. ...
TDOA5A.tdoaConstraintGraph(...
Net, Dat, obj.T, t);

%compute the constraint matrices
[A, b] = constraintMatrix(obj, ...

Env, Net, Dat, obj.N, t, tree);

%write out the result
obj.position(t,:) = A\b;

%print a status message
if print == true

disp([’Target ’, num2str(t), ’ complete.’])
end%status message

end%end loop over targets
end%end TDOA5
% Setters

% Getters
function[out] = getPosition(obj, n)

out = obj.position(n,:);
end%end getPosition

function [A, b] = constraintMatrix(obj, ...
Env, Nwk, Dat, N, tgt, constraints)

%validate inputs
validateattributes(obj, ...

168

{’Geolocation.Analysis.TDOA5A’},...
{’nonempty’},’’,’obj’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},’’,’Env’)

validateattributes(Nwk, {’Geolocation.Network’},...
{’nonempty’},’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},’’,’Dat’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

validateattributes(constraints, {’numeric’},...
{’nonempty’,’ncols’,2,’integer’,’positive’},...
’’,’constraints’)

%Compute all the possible pairs of
%constraints--that is, pairs of rows of the
%constraint graph.
conPairs = combnk(1:1:length(constraints(:,1)),2);
%compute all the possible constraint equation
A = zeros(nchoosek(length(conPairs(:,1)),2),3);
b = A(:,1);
%for each edge pair (linear tdoa constraint)
for ind = 1:1:length(conPairs(:,1))

[A(ind,:),b(ind,1)] = obj.constraintEquation(...
constraints(conPairs(ind,2),1),...
constraints(conPairs(ind,2),2),...
constraints(conPairs(ind,1),1),...
constraints(conPairs(ind,1),2),...
Nwk, Dat, Env, N, tgt);

end
%find the two most orthogonal
innerProducts = zeros(length(conPairs(:,1)),1);
rowPairs = combnk(1:1:length(conPairs(:,1)),2);
%loop over all the pairs of rows of A
for ind = 1:1:length(rowPairs(:,1))

%compute the inner product--this is faster than
%the cross product.
innerProducts(ind,1) = abs(dot(A(rowPairs(ind,1),:),...

169

A(rowPairs(ind,2),:)));
end%loop over row pairs
[˜,whichMin] = min(innerProducts);%find the pair

%with the minimum inner product
A1 = A(rowPairs(whichMin,1),:);
A2 = A(rowPairs(whichMin,2),:);
b1 = b(rowPairs(whichMin,1),1);
b2 = b(rowPairs(whichMin,2),1);
%compute the vector normal to the first two
%constraints
normVT = cross(A1,A2);
%find the constraint most parallel to the normal
%vector
dotProds = zeros(length(A(:,1)),1);
for ind = 1:1:length(A(:,1))

dotProds(ind,1) = dot(normVT,A(ind,:));
end%
whichMax = ...

find(dotProds == max(dotProds),1,’first’);
A3 = A(whichMax,:);
b3 = b(whichMax,1);

%pack the three equations into a matrix
A = [A1;A2;A3];
b = [b1;b2;b3];

end%end constraintMatrix
end%end methods

methods(Static)
function[out] = ...

tdoaConstraintGraph(Nwk, Dat, T, tgt)
%validate inputs
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},’’,’Nwk’)
validateattributes(Dat, {’Geolocation.Data’},...

{’nonempty’},’’,’Dat’)
validateattributes(T, {’numeric’}, ...

{’integer’, ’>=’, 5, ’<=’, Nwk.nTowers},...
’’, ’T’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

170

if T < Nwk.nTowers
%Determine the towers will be used for the
%analysis. Ensure
power = Dat.power(tgt,:);%get the power

%recieved at each tower
temp = sort(power, ’descend’);
temp = 0.5*(temp(T)+temp(T+1));
thresh = min(Nwk.detectThreshold, temp);

%delete all of the towers which cannot hear the
%transmitter based on the detection threshold.
towers = 1:1:Nwk.nTowers;%start with the set of

%all towers
for n = Nwk.nTowers:-1:1%go backwards to make

%this strategy work
if power(n)<thresh%if insufficient recieved

%signal
towers(n) = [];%delete that tower index

end%end if
end%for each tower

else% if the user wants all towers in the system
%considered

towers = 1:1:Nwk.nTowers;%keep all towers
end%if T < Nwk.nTowers

%set of the graph
graph = Geolocation.Analysis.Graph(towers);
%compute all possible edges
edges = combnk(towers,2);
%get the timing advance values associated with this
%target
temp = getTargetTA(Dat, tgt);

%For each possible edge . . .
for ind = 1:1:length(edges(:,1))

%set the weight. If the time difference is not
%zero, onee
if temp(edges(ind,1)) ˜= temp(edges(ind,2))

setEdge(graph, edges(ind,1), edges(ind,2),1)
else%edge weight is zero

setEdge(graph,edges(ind,1), edges(ind,2),0)

171

end%end set weight on edge ind
end%end loop over possible edges
out = findTree(graph);%find a tree

end%tdoaConstraintGraph
end%end static methods

end %end TDOA5A

9. TDOA5B Class
classdef TDOA5B < Geolocation.Analysis.TDOA

%TDOA5B Time Difference of Arrival 3-D Geolocation using Five Recievers
% TDOA5B impliments a modified version of the closed
% form algorithm given in Bakhoum 2006 to solve the
% passive localization problem in three dimensions
% using Time Difference of Arrival. The modifications
% are the incorporation of a weigthed constraint choice
% algorithm. Properties:
% position: an N (x) 3 matrix of target estimated
% position
% N: the assumed refractivity of the medium
% T: the number of towers to use in forming the
% estimate
%
% Functions . . .
%
% TDOA5B(Env, Net, Dat, N, T, print): returns an object
% of class TDOA5B. Inputs:
% Env: an object of class Environment
% Net: an object of class Network
% Dat: an object of class Data
% N: Assumed refractivity of the medium (ppm)
% T: the number of towers to use in forming the
% estimate (>=5)
% print: a Boolean indicating whether or not to print a
% status message.
%
% getPosition(obj): returns the estimated position of a
% specified target. Inputs:
% obj: an object of class TDOA5B
% n: target number
%

172

% tdoaConstraintGraph(Nwk, Dat, T, tgt): returns an
% edge list for the TDOA constraint graph. Inputs:
% Nwk: an object of class Network
% Dat: an object of class Data
% T: the number of towers to use in forming the
% estimate
% tgt: the target number (or the observation of the
% target) for which to compute the constraint graph.
%
% constraintMatrix(obj, Env, Nwk, Dat, N, tgt,
% constraints): returns a matrix A and a vector b with
% the linear constraints. Inputs:
% obj: an object of class TDOA5B
% Env: an object of class Environment
% Nwk: an object of class Network
% Dat: an object of class Data
% N: Assumed refractivity of the medium (ppm)
% tgt: the target number (or the observation of the
% target) for which to compute the constraint graph.
% constraints: an edge list of the possible constraints
% from which to choose.

properties(SetAccess = private)
position
N;
T = 7;

end%End Properties

methods
%% Constructor
%TDOA5B--Five Reciever Solution in 3D using Bakhoum
%2006’s Algorith

function[obj] = TDOA5B(Env, Net, Dat, N, T, print)
%validate attributes
validateattributes(Env, ...

{’Geolocation.Environment’},...
{’nonempty’},’’,’Env’)

validateattributes(Net, ...
{’Geolocation.Network’},...
{’nonempty’},’’,’Net’)

validateattributes(Dat, {’Geolocation.Data’},...

173

{’nonempty’},’’,’Dat’)
validateattributes(N, {’numeric’}, ...

{’nonempty’, ’scalar’},’TOA’,’N’)
validateattributes(T, {’numeric’},...

{’integer’, ’>=’, 5, ’<=’, Net.nTowers},...
’’, ’T’)

validateattributes(print, {’logical’},...
{’nonempty’},’’,’print’)

%convert N from ppm to refractive index
obj.N = N;

%store T
obj.T = T;

%preallocate the position matrix
obj.position = zeros(Dat.n, 3);

%for each target compute the position estimate
for t = 1:1:Dat.n

%compute a tree from the TDOA constraint graph
%in adjacency list form
tree = Geolocation.Analysis. ...

TDOA5B.tdoaConstraintGraph(...
Net, Dat, obj.T, t);

%compute the constraint matrices
[A, b] = constraintMatrix(obj, ...

Env, Net, Dat, obj.N, t, tree);

%write out the result
obj.position(t,:) = A\b;

%print a status message
if print == true

disp([’Target ’, num2str(t), ’ complete.’])
end%status message

end%end loop over targets
end%end TDOA5
% Setters

174

% Getters
function[out] = getPosition(obj, n)

out = obj.position(n,:);
end%end getPosition

function [A, b] = constraintMatrix(obj, ...
Env, Nwk, Dat, N, tgt, constraints)

%validate inputs
validateattributes(obj, ...

{’Geolocation.Analysis.TDOA5B’},...
{’nonempty’},’’,’obj’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},’’,’Env’)

validateattributes(Nwk, {’Geolocation.Network’},...
{’nonempty’},’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},’’,’Dat’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,’<=’,...
Dat.n},’’,’tgt’)

validateattributes(constraints, {’numeric’},...
{’nonempty’,’ncols’,2,’integer’,’positive’},...
’’,’constraints’)

%Compute all the possible pairs of
%constraints--that is, pairs of rows of the
%constraint graph.
conPairs = combnk(1:1:length(constraints(:,1)),2);
%compute all the possible constraint equation
A = zeros(nchoosek(length(conPairs(:,1)),2),3);
b = A(:,1);
%for each edge pair (linear tdoa constraint)
for ind = 1:1:length(conPairs(:,1))

[A(ind,:),b(ind,1)] = obj.constraintEquation(...
constraints(conPairs(ind,2),1),...
constraints(conPairs(ind,2),2),...
constraints(conPairs(ind,1),1),...
constraints(conPairs(ind,1),2),...
Nwk, Dat, Env, N, tgt);

175

end
%find the two most orthogonal
innerProducts = zeros(length(conPairs(:,1)),1);
rowPairs = combnk(1:1:length(conPairs(:,1)),2);
%loop over all the pairs of rows of A
for ind = 1:1:length(rowPairs(:,1))

%compute the inner product--this is faster than
%the cross product.
innerProducts(ind,1) = abs(dot(A(rowPairs(ind,1),:),...

A(rowPairs(ind,2),:)));
end%loop over row pairs
[˜,whichMin] = min(innerProducts);%find the pair

%with the minimum inner product
A1 = A(rowPairs(whichMin,1),:);
A2 = A(rowPairs(whichMin,2),:);
b1 = b(rowPairs(whichMin,1),1);
b2 = b(rowPairs(whichMin,2),1);
%compute the vector normal to the first two
%constraints
normVT = cross(A1,A2);
%find the constraint most parallel to the normal
%vector
dotProds = zeros(length(A(:,1)),1);
for ind = 1:1:length(A(:,1))

dotProds(ind,1) = dot(normVT,A(ind,:));
end%
whichMax = ...

find(dotProds == max(dotProds),1,’first’);
A3 = A(whichMax,:);
b3 = b(whichMax,1);

%pack the three equations into a matrix
A = [A1;A2;A3];
b = [b1;b2;b3];

end%end constraintMatrix
end%end methods

methods(Static)
function[out] = tdoaConstraintGraph(Nwk, Dat, T, tgt)

%validate inputs
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},’’,’Nwk’)

176

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},’’,’Dat’)

validateattributes(T, {’numeric’}, ...
{’integer’, ’>=’, 5, ’<=’, Nwk.nTowers},...
’’, ’T’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

if T < Nwk.nTowers
%Determine the towers will be used for the
%analysis. Ensure
power = Dat.power(tgt,:);%get the power recieved

%at each tower
temp = sort(power, ’descend’);
temp = 0.5*(temp(T)+temp(T+1));
thresh = min(Nwk.detectThreshold, temp);

%delete all of the towers which cannot hear the
%transmitter based on the detection threshold.
towers = 1:1:Nwk.nTowers;%start with the set of

%all towers
for n = Nwk.nTowers:-1:1%go backwards to make

%this strategy work
if power(n)<thresh%if insufficient recieved

%signal
towers(n) = [];%delete that tower index

end%end if
end%for each tower

else% if the user wants all towers in the system
%considered

towers = 1:1:Nwk.nTowers;%keep all towers
end%if T < Nwk.nTowers

%set of the graph
graph = Geolocation.Analysis.Graph(towers);
%compute all possible edges
edges = combnk(towers,2);
%get the timing advance values associated with this
%target
temp = getTargetTA(Dat, tgt);

177

%For each possible edge . . .
for ind = 1:1:length(edges(:,1))

%set the weight. If the time difference is not
%zero,
if temp(edges(ind,1)) ˜= temp(edges(ind,2))

w = abs(temp(edges(ind,1)) - ...
temp(edges(ind,2)));

else%edge weight is zero
w = 0;

end%end set weight on edge ind
setEdge(graph,edges(ind,1), edges(ind,2),w)

end%end loop over possible edges
out = findTree(graph);%find a tree

end%tdoaConstraintGraph
end%end static methods

end %end TDOA5B

10. TOA Class
classdef TOA

%TOA Provides common functionality and variables for all TOA classes
% This class provides three properties which are
% abstract and two instantiated static functions which
% are of use across all the time of arrival algorithm
% implimenting classes.
%
%The properties are:
% position--holds the estimated positions
% N--the refractivity used for the estimates
% T--the number of towers considered in the analysis.
%
%toaConstraintEquation(): a static method which returns
%two outputs. The first is a vector which is a row of the
%solution matrix. The second is the constant for the
%associated vector of constants. Takes arguments
% Env: an object of class Geolocation.Environment
% Nwk: an object of class Geoloction.Network
% Dat: an object of class Geoloction.Data
% N: the assumed refractivity in parts per million
% tgt: the target number to consider
% t1: the first tower to use in constructing the

178

% constraint
% t2: the second tower to use in constructing the
% constraint

properties(Abstract, SetAccess = immutable)
position
N
T

end

methods(Abstract)
[A,b] = constraintMatrix(obj, ...

Env, Nwk, Dat, N, tgt, constraints)
end

methods(Static, Abstract)
[out] = toaConstraintGraph(Nwk, Dat, T, tgt)

end

methods(Static)
function[rowA, rowB] = toaConstraintEquation(...

Env, Nwk, Dat, tgt, N, t1, t2)
%validate attributes
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(tgt,{’numeric’},...
{’nonempty’, ’scalar’, ’positive’,...
’<=’,Dat.n},’’,’tgt’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(t1,{’numeric’},...
{’nonempty’, ’scalar’, ’positive’,...
’<=’,Nwk.nTowers},’’,’t1’)

validateattributes(t2,{’numeric’},...

179

{’nonempty’, ’scalar’, ’positive’,...
’<=’,Nwk.nTowers},’’,’t2’)

%extract the positions of towers t1 and t2
pi = getTower(Nwk, t1);
pj = getTower(Nwk, t2);

%create the ranges from each tower to the target
temp = getTargetTA(Dat, tgt);
vp = Env.c/Env.ppm2n(N);
ri = vp*temp(t1)*Nwk.tau;
rj = vp*temp(t2)*Nwk.tau;

%solve for the distance from t1 to the center of
%the constraint circle
dij = sqrt(dot(pj-pi,pj-pi));
tempTop = riˆ2 - rjˆ2 + dot(pj-pi,pj-pi);
tempBot = 2*dij;
di = tempTop/tempBot;

%solve for the center of the constraint circle
pij = pi + (di/dij).*(pj-pi);

%solve for the orientation of the constraint plane
nij = (pj-pi)./dij;
%construct row of A
rowA = nij;

%compute the element of B
rowB = dot(nij,pij);

end%end toaConstraintEquation
end

end

11. TOA4 Class
classdef TOA4 < Geolocation.Analysis.TOA

%TOA4 Time Of Arrival Position Solver
% This class provides an algorithm to solve for the
% position of a target in three dimensions given
% objects of class Network and Data along with an

180

% estimated refractivity. This class cannot handle
% missing observations.
%
%FUNCTIONS
%TOA4(Nwk, Dat, N, T): The constructor. Always considers
%only the four closest towers by recieved power. Takes
%arguments
% Nwk: an object of class Geoloction.Network
% Dat: an object of class Geoloction.Data
% N: the assumed refractivity in parts per million
%Outputs:
% position: an Mx3 matrix of estimated positions.
%
%constraintMatrix(obj, Env, Nwk, Dat, N, tgt,
%constraints)
% returns the set of ‘‘best" (in this class, no weights)
% constraints packed into matrix form for solving
% position estimation problem. Takes inputs
% obj: an object of class TOA4
% Nwk: an object of class Network
% Env: an object of class Geolocation.Environment
% Dat: an object which inherits from class Data
% N: the assumed refractivity in parts per million
% tgt: the target number to consider
% constraints: a list of tower pairs which are the
% possible constraints
%
%toaConstraintGraph(Nwk, Dat, T, tgt): a static method
%which returns a TOA Constraint Graph which is a list of
%the tower pairs to use in forming the final solution.
%Takes arguments
% Nwk: an object of class Geoloction.Network
% Dat: an object of class Geoloction.Data
% N: the assumed refractivity in parts per million
% T: number of towers to consider when forming the final
% solution
% tgt: the target number to consider
%
%toaConstraintEquation(): a static method which returns
%two outputs. The first is a vector which is a row of the
%solution matrix. The second is the constant for the
%associated vector of constants. Takes arguments

181

% Env: an object of class Geolocation.Environment
% Nwk: an object of class Geoloction.Network
% Dat: an object of class Geoloction.Data
% N: the assumed refractivity in parts per million
% tgt: the target number to consider
% t1: the first tower to use in constructing the
% constraint
% t2: the second tower to use in constructing the
% constraint

properties(SetAccess = immutable)
position
N
T = 4;

end

methods
function[obj] = TOA4(Nwk, Dat, Env, N)

%validate object inputs
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’TOA’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’TOA’,’Dat’)

%record the refractivity
validateattributes(N, {’numeric’}, ...

{’nonempty’, ’scalar’},’TOA’,’N’)
obj.N = N;

%initialize the position matrix
obj.position = zeros(Dat.n, 3);

%FOR each target
for ind = 1:1:Dat.n

%Select a set of independant constraints
constraints = obj.toaConstraintGraph(Nwk, ...

Dat, 4, ind);
%Select those constraints which maximimze the
%determinant of the constraint matrix
[A,b] = constraintMatrix(obj, ...

182

Env, Nwk, Dat, N, ind, constraints);

%Solve the matrix equation and save
obj.position(ind, :) = A\b;

end%end FOR each target
end%End constructor

function[A,b] = constraintMatrix(obj, ...
Env, Nwk, Dat, N, tgt, constraints)

%validate attributes
validateattributes(obj, ...

{’Geolocation.Analysis.TOA4’},...
{’nonempty’},...
’’,’obj’)

validateattributes(Nwk, {’Geolocation.Network’},...
{’nonempty’},...
’’,’Nwk’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(tgt, {’numeric’},...
{’nonempty’, ’integer’,’positive’,...
’<=’,Dat.n},’’,’tgt’)

validateattributes(constraints, {’numeric’},...
{’nonempty’,’ncols’,2,’integer’,’positive’},...
’’,’constraints’)

%Initialize A and B
A = zeros(3,3);
b = zeros(3,1);

%compute the set of rows of A
tempA = zeros(length(constraints(:,1)),3);
tempB = zeros(length(constraints(:,1)),1);
for c = 1:1:length(constraints(:,1))

[tempA(c,:),tempB(c,1)] = ...
obj.toaConstraintEquation(...

183

Env, Nwk, Dat, tgt, N, constraints(c,1), ...
constraints(c,2));

end%end loop over the possible constraints

%pack the first three rows of A, store the
%corresponding parts of b
A(1,:) = tempA(1,:);
A(2,:) = tempA(2,:);
b(1) = tempB(1);
b(2) = tempB(2);
A(3,:) = tempA(3,:);%store this vector as the third

% row of A
b(3) = tempB(3);%store the entry of b vector

end%end constraintMatrix
end%end normal public methods

methods(Static)
function[out] = toaConstraintGraph(Nwk, Dat, T, tgt)

%validate attributes
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(T, {’numeric’}, ...
{’nonempty’, ’scalar’,’positive’,’>=’,4,...
’<=’,Nwk.nTowers},...
’’,’T’)

validateattributes(tgt,{’numeric’},...
{’nonempty’, ’scalar’, ’positive’,...
’<=’,Dat.n},’’,’tgt’)

if Nwk.nTowers < T
error([’Insufficient towers in network’,...

’ to support analysis.’])
end

%Determine the towers will be used for the
%analysis. Ensure
power = Dat.power(tgt,:);%get the power recieved at

% each tower
temp = sort(power, ’descend’);

184

%if the number of towers to consider is less than
%the total number avaliable
if T < Nwk.nTowers

temp = 0.5*(temp(T)+temp(T+1));
else

temp = min(temp);
end
thresh = min(Nwk.detectThreshold, temp);

%delete all of the towers which cannot hear the
%transmitter based on the detection threshold.
towers = 1:1:Nwk.nTowers;%start with the set of all

% towers
for n = Nwk.nTowers:-1:1%go backwards to make this

%strategy work
if power(n)<thresh%if insufficient recieved

%signal
towers(n) = [];%delete that tower index

end%end if
end%for each tower

%initialize a Graph object with the remaining
%towers
cGraph = Geolocation.Analysis.Graph(towers);
%compute and store the weights associated with each
%edge
tPairs = combnk(towers,2);
nTP = length(tPairs(:,1));
for p = 1:1:nTP

%the weight is 1 so no a priori information is
%used in selecting constraint equations
w = 1;
%store to the graph
setEdge(cGraph, tPairs(p,1), tPairs(p,2), w)

end%end loop over pairs

%Output the result
out = findTree(cGraph);

end%end toaConstraintGraph
end%end static methods

end

185

12. TOA4A Class
classdef TOA4A < Geolocation.Analysis.TOA

%TOA4A Time Of Arrival Position Solver
% This class provides an algorithm to solve for the
% position of a target in three dimensions given
% objects of class Network and Data along with an
% estimated refractivity. This class includes the use
% of a edge selection process. This class cannot handle
% missing observations.
%
%Inputs:
% Nwk: an object of class Network
% Dat: an object of class Data
% N: assumed refractivity in parts per million
% T: number of towers to consider when forming the final
% solution (>=4) This variable forces at least T towers
% to be considered in the analysis. If the Nwk’s
% detection threshold is lower than that required to
% keep T towers, then more are used.
%
%Outputs:
% position: an Mx3 matrix of estimated positions.
%
%FUNCTIONS
%TOA4A(Nwk, Dat, N, T): The constructor. Takes arguments
% Nwk: an object of class Geoloction.Network
% Dat: an object of class Geoloction.Data
% N: the assumed refractivity in parts per million
% T: number of towers to consider when forming the final solution
%
%constraintMatrix(obj, Env, Nwk, Dat, N, tgt,
%constraints) returns the set of ‘‘best" (in this class,
%no weights) constraints packed into matrix form for
%solving position estimation problem. Takes inputs
% obj: an object of class TOA4
% Nwk: an object of class Network
% Env: an object of class Geolocation.Environment
% Dat: an object which inherits from class Data
% N: the assumed refractivity in parts per million
% tgt: the target number to consider
% constraints: a list of tower pairs which are the
% possible constraints

186

%
%toaConstraintGraph(Nwk, Dat, T, tgt): a static method
%which returns a TOA Constraint Graph which is a list of
%the tower pairs to use in forming the final solution.
%Takes arguments
% Nwk: an object of class Geoloction.Network
% Dat: an object of class Geoloction.Data
% N: the assumed refractivity in parts per million
% T: number of towers to consider when forming the final
% solution
% tgt: the target number to consider
%

properties(SetAccess = immutable)
position
N
T

end

methods
function[obj] = TOA4A(Nwk, Dat, Env, N, T)

%validate object inputs
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’}, ’TOA’,’Nwk’)
validateattributes(Dat, {’Geolocation.Data’},...

{’nonempty’}, ’TOA’,’Dat’)

%record the refractivity
validateattributes(N, {’numeric’}, ...

{’nonempty’, ’scalar’},’TOA’,’N’)
obj.N = N;

%validate and record T
validateattributes(T, {’numeric’}, ...

{’integer’, ’>=’, 4,’<=’,Nwk.nTowers},...
’TOA4’, ’T’)

obj.T = T;

%initialize the position matrix
obj.position = zeros(Dat.n, 3);

%FOR each target

187

for ind = 1:1:Dat.n
%Select a set of independant constraints
constraints = ...

obj.toaConstraintGraph(Nwk, Dat, T, ind);
%Select those constraints which maximimze the
%determinant of the constraint matrix
[A,b] = constraintMatrix(obj, ...

Env, Nwk, Dat, N, ind, constraints);

%Solve the matrix equation and save
obj.position(ind, :) = A\b;

end%end FOR each target
end%End constructor

function[A,b] = constraintMatrix(obj, ...
Env, Nwk, Dat, N, tgt, constraints)

%validate attributes
validateattributes(obj, ...

{’Geolocation.Analysis.TOA4A’},...
{’nonempty’},...
’’,’obj’)

validateattributes(Nwk, {’Geolocation.Network’},...
{’nonempty’},...
’’,’Nwk’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(constraints, {’numeric’},...
{’nonempty’,’ncols’,2,’integer’,’positive’},...
’’,’constraints’)

%Initialize A and B
A = zeros(3,3);
b = zeros(3,1);

%compute the set of rows of A
tempA = zeros(length(constraints(:,1)),3);

188

tempB = zeros(length(constraints(:,1)),1);
for c = 1:1:length(constraints(:,1))

[tempA(c,:),tempB(c,1)] = ...
obj.toaConstraintEquation(...

Env, Nwk, Dat, tgt, N, constraints(c,1),...
constraints(c,2));

end%end loop over the possible constraints

%pick the two most orthogonal rows
temp = combnk(1:1:length(constraints(:,1)),2);
tempIP = ...

zeros(nchoosek(length(constraints(:,1)),2),1);
for c = 1:1:length(temp(:,1))

tempIP(c) = ...
abs(dot(tempA(temp(c,1),:),...
tempA(temp(c,2),:)));

end%end loop over the pairwise combinations of
%constraints

[˜,tempIP] = min(tempIP);%which pair has the
%smallest dot product

tempIP = temp(tempIP,:);%get constraints are most
%orthogonal

%pack these rows into the first two rows of A,
%store the corresponding parts of b
A(1,:) = tempA(tempIP(1),:);
A(2,:) = tempA(tempIP(2),:);
b(1) = tempB(tempIP(1));
b(2) = tempB(tempIP(2));

%pick the vector which is most orthogonal to these
%first two
tempC = cross(A(1,:), A(2,:));%the vector

%orthogonal to the first two
tempCP = zeros(length(constraints(1,:)),1);
for c = 1:1:length(constraints(:,1))

tempCP(c,1) = abs(dot(tempA(c,:),tempC));
end%test each constraint. I choose to retest the

%two I already have because I know they will be
%zero

[˜,tempCP] = max(tempCP);%figure out which one is
% most orthogonal

189

A(3,:) = tempA(tempCP,:);%store this vector as the
%third row of A

b(3) = tempB(tempCP);%store the entry of b vector
end%end constraintMatrix

end%end normal public methods

methods(Static)
function[out] = toaConstraintGraph(Nwk, Dat, T, tgt)

%validate attributes
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(T, {’numeric’}, ...
{’nonempty’, ’scalar’,’positive’,’>=’,4},’’,’T’)

validateattributes(tgt,{’numeric’},...
{’nonempty’, ’scalar’, ’positive’,...
’<=’,Dat.n},’’,’tgt’)

%Determine the towers will be used for the
%analysis. Ensure
power = Dat.power(tgt,:);%get the power recieved at

% each tower
temp = sort(power, ’descend’);
%if the number of towers to consider is less than
%the total number avaliable
if T < Nwk.nTowers

temp = 0.5*(temp(T)+temp(T+1));
else

temp = min(temp);
end
thresh = min(Nwk.detectThreshold, temp);

%delete all of the towers which cannot hear the
%transmitter based on the detection threshold.
towers = 1:1:Nwk.nTowers;%start with the set of all

% towers
for n = Nwk.nTowers:-1:1%go backwards to make this

%strategy work
if power(n)<thresh%if insufficient recieved

190

%signal
towers(n) = [];%delete that tower index

end%end if
end%for each tower

%initialize a Graph object with the remaining
%towers
cGraph = Geolocation.Analysis.Graph(towers);
%compute and store the weights associated with each
%edge
tPairs = combnk(towers,2);
nTP = length(tPairs(:,1));
for p = 1:1:nTP

%set the weight equal to one. Any positive
%constant will do.
w = 1;
%store to the graph
setEdge(cGraph, tPairs(p,1), tPairs(p,2), w)

end%end loop over pairs

%Output the result
out = findTree(cGraph);

end%end toaConstraintGraph
end%end static methods

end

13. TOA4B Class
classdef TOA4B < Geolocation.Analysis.TOA

%TOA4B Time Of Arrival Position Solver
% This class provides an algorithm to solve for the
% position of a target in three dimensions given
% objects of class Network and Data along with an
% estimated refractivity. This class includes the use
% of a weight function to augment the edge selection
% process and the weight is the difference as a
% fraction of the total. This class cannot handle
% missing observations.
%
%Inputs:

191

% Nwk: an object of class Network
% Dat: an object of class Data
% N: assumed refractivity in parts per million.
% T: number of towers to consider when forming the final
% solution (>=4) This variable forces at least T towers
% to be considered in the analysis. If the Nwk’s
% detection threshold is lower than that required to
% keep T towers, then more are used.
%
%Outputs:
% position: an Mx3 matrix of estimated positions.
%
%FUNCTIONS
%TOA4B(Nwk, Dat, N, T): The constructor. Takes arguments
% Nwk: an object of class Geoloction.Network
% Dat: an object of class Geoloction.Data
% N: the assumed refractivity in parts per million
% T: number of towers to consider when forming the final
% solution
%
%constraintMatrix(obj, Env, Nwk, Dat, N, tgt,
%constraints) returns the set of ‘‘best" (in this class,
%no weights) constraints packed into matrix form for
%solving position estimation problem. Takes inputs
% obj: an object of class TOA4
% Nwk: an object of class Network
% Env: an object of class Geolocation.Environment
% Dat: an object which inherits from class Data
% N: the assumed refractivity in parts per million
% tgt: the target number to consider
% constraints: a list of tower pairs which are the
% possible constraints
%
%toaConstraintGraph(Nwk, Dat, T, tgt): a static method
%which returns a TOA Constraint Graph which is a list of
%the tower pairs to use in forming the final solution.
%Takes arguments
% Nwk: an object of class Geoloction.Network
% Dat: an object of class Geoloction.Data
% N: the assumed refractivity in parts per million
% T: number of towers to consider when forming the final
% solution

192

% tgt: the target number to consider
%

properties(SetAccess = immutable)
position
N
T

end

methods
function[obj] = TOA4B(Nwk, Dat, Env, N, T)

%validate object inputs
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’TOA’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’TOA’,’Dat’)

%record the refractivity
validateattributes(N, {’numeric’}, ...

{’nonempty’, ’scalar’},’TOA’,’N’)
obj.N = N;

%validate and record T
validateattributes(T, {’numeric’},...

{’integer’, ’>=’, 4, ’<=’,Nwk.nTowers},...
’TOA4’, ’T’)

obj.T = T;

%initialize the position matrix
obj.position = zeros(Dat.n, 3);

%FOR each target
for ind = 1:1:Dat.n

%Select a set of independant constraints
constraints = obj.toaConstraintGraph(Nwk, ...

Dat, Env, T, N, ind);
%Select those constraints which maximimze the
%determinant of the constraint matrix
[A,b] = constraintMatrix(obj, ...

Env, Nwk, Dat, N, ind, constraints);

193

%Solve the matrix equation and save
obj.position(ind, :) = A\b;

end%end FOR each target
end%End constructor

function[A,b] = constraintMatrix(obj, ...
Env, Nwk, Dat, N, tgt, constraints)

%validate attributes
validateattributes(obj, ...

{’Geolocation.Analysis.TOA4B’},...
{’nonempty’},...
’’,’obj’)

validateattributes(Nwk, {’Geolocation.Network’},...
{’nonempty’},...
’’,’Nwk’)

validateattributes(Env, ...
{’Geolocation.Environment’},...
{’nonempty’},...
’’,’Env’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(constraints, {’numeric’},...
{’nonempty’,’ncols’,2,’integer’,’positive’},...
’’,’constraints’)

%Initialize A and B
A = zeros(3,3);
b = zeros(3,1);

%compute the set of rows of A
tempA = zeros(length(constraints(:,1)),3);
tempB = zeros(length(constraints(:,1)),1);
for c = 1:1:length(constraints(:,1))

[tempA(c,:),tempB(c,1)] = ...
obj.toaConstraintEquation(...

Env, Nwk, Dat, tgt, N, constraints(c,1), ...
constraints(c,2));

end%end loop over the possible constraints

194

%pick the two most orthogonal rows
temp = combnk(1:1:length(constraints(:,1)),2);
tempIP = ...

zeros(nchoosek(length(constraints(:,1)),2),1);
for c = 1:1:length(temp(:,1))

tempIP(c) = ...
abs(dot(tempA(temp(c,1),:),...
tempA(temp(c,2),:)));

end%end loop over the pairwise combinations of
%constraints

[˜,tempIP] = min(tempIP);%which pair has the
%smallest dot product

tempIP = temp(tempIP,:);%get constraints are most
%orthogonal

%pack these rows into the first two rows of A,
%store the corresponding parts of b
A(1,:) = tempA(tempIP(1),:);
A(2,:) = tempA(tempIP(2),:);
b(1) = tempB(tempIP(1));
b(2) = tempB(tempIP(2));

%pick the vector which is most orthogonal to these
%first two
tempC = cross(A(1,:), A(2,:));%the vector

%orthogonal to the first two
tempCP = zeros(length(constraints(1,:)),1);
for c = 1:1:length(constraints(:,1))

tempCP(c,1) = abs(dot(tempA(c,:),tempC));
end%test each constraint. I choose to retest the

%two I already have because I know they will be
%zero

[˜,tempCP] = max(tempCP);%figure out which one is
% most orthogonal

A(3,:) = tempA(tempCP,:);%store this vector as the
%third row of A

b(3) = tempB(tempCP);%store the entry of b vector
end%end constraintMatrix

end%end normal public methods

methods(Static)
function[out] = toaConstraintGraph(Nwk, Dat, Env,...

195

T, N, tgt)
%validate attributes
validateattributes(Nwk, {’Geolocation.Network’},...

{’nonempty’},...
’’,’Nwk’)

validateattributes(Dat, {’Geolocation.Data’},...
{’nonempty’},...
’’,’Dat’)

validateattributes(T, {’numeric’}, ...
{’nonempty’, ’scalar’,’positive’,’>=’,4,...
’<=’,Nwk.nTowers},...
’’,’T’)

validateattributes(N, {’numeric’}, ...
{’nonempty’, ’scalar’},’TOA’,’N’)

validateattributes(tgt,{’numeric’},...
{’nonempty’, ’scalar’, ’positive’,...
’<=’,Dat.n},’’,’tgt’)

%Determine the towers will be used for the
%analysis. Ensure
power = Dat.power(tgt,:);%get the power recieved at

% each tower
temp = sort(power, ’descend’);
%if the number of towers to consider is less than
%the total number avaliable
if T < Nwk.nTowers

temp = 0.5*(temp(T)+temp(T+1));
else

temp = min(temp);
end
thresh = min(Nwk.detectThreshold, temp);

%delete all of the towers which cannot hear the
%transmitter based on the detection threshold.
towers = 1:1:Nwk.nTowers;%start with the set of all

% towers
for n = Nwk.nTowers:-1:1%go backwards to make this

% strategy work
if power(n)<thresh%if insufficient recieved

% signal
towers(n) = [];%delete that tower index

end%end if

196

end%for each tower

%initialize a Graph object with the remaining
%towers
cGraph = Geolocation.Analysis.Graph(towers);
%compute and store the weights associated with
% each edge
tPairs = combnk(towers,2);
nTP = length(tPairs(:,1));
for p = 1:1:nTP

%compute the fractional distance from tower 1 to
%tower 2
temp1 = Dat.timingAdjust(tgt,tPairs(p,1));
temp2 = Dat.timingAdjust(tgt,tPairs(p,2));
vp = Env.c/Env.ppm2n(N);
ri = vp*temp1*Nwk.tau;
rj = vp*temp2*Nwk.tau;
vij = Nwk.towers(tPairs(p,1),:) - ...

Nwk.towers(tPairs(p,2),:);
dij = sqrt(dot(vij,vij));
tempTop = riˆ2 - rjˆ2 + dot(vij,vij);
tempBot = 2*dij;
di = tempTop/tempBot;
temp4 = di./dij;
%the total weight is the difference as a
%fraction of the total.
w = max(temp4, 1-temp4);
%store to the graph
setEdge(cGraph, tPairs(p,1), tPairs(p,2), w)

end%end loop over pairs

%Output the result
out = findTree(cGraph);

end%end toaConstraintGraph
end%end static methods

end

14. VelocityError Class
classdef VelocityError

%VELOCITYERROR Provides methods to analyze errors in

197

%estimated target velocities
% VelocityError provides methods to analyze the errors
% associated with estimated velocity estimates given
% the true values.

properties (SetAccess = private)
error;%error
L2;%L2 norm of the error vectors
L1;%L1 norm of the error vectors
Linf;%L0 norm of the error vectors

end%end properties

methods
% Constructor
%FrequencyError--creates and initializes an object of
%class PositionError
%Tgt: An object of Class Target containing the true
%data
%Est: Any object which contains a property position
%which contains the estimated positions and a property
%N the assumed refractivity of the environment
function[obj] = VelocityError(Tgt, Est)

obj.error = Tgt.velocity - Est.velocity;
obj.L2 = ...

sqrt(diag(obj.error*transpose(obj.error)));
obj.L1 = ...

transpose(sum(transpose(abs(obj.error))));
obj.Linf = ...

transpose(max(transpose(abs(obj.error))));
end%end PositionError

% Plot Methods
%l2histogram--plots the histogram of the L2 errors
%obj: an object of class PositionError
%error: a string, the name of the error measure
%property to be plotted
%Est: any object of class which contains the assumed
%refractivity
%Env: an object of class Environment
%bins: number of bins to use or a vector of bins
%newFig: boolean to indicate whether or not to write
%to a new figure

198

function[] = l2histogram(obj, error, Est, Env,...
bins, newFig)

%switch on error to pick the correct set of errors
switch error

case ’L2’ %L2 errors
err = obj.L2;
title = ’Frequency Adjust’;
pick = ’L2’;

case ’L1’ %L1 errors
err = obj.L1;
title = ’Frequency Adjust’;
pick = ’L1’;

case ’Linf’ %L-infinity errors
err = obj.Linf;
title = ’Frequency Adjust’;
pick = ’L-infinity’;

end
%compute the proportions in each bin
[n, xout] = hist(err, bins);
n = n/sum(n);

%start a new figure as appropriate
if newFig == true

figure()
end

%create the histogram
bar(xout, n, 1)
xlabel(’Error (Meters)’)
ylabel(’Proportion’)
title({[’Histogram of ’,title,...

’ Velocity Esimate ’, pick, ’ Errors’];
[’True Refractivity: ’,...
num2str(round(getRefractivity(Env)))];
[’Assumed Refractivity: ’,...
num2str(round(Est.N))]});

end%end l2histogram
end%end methods

end

199

F. UTILITY FUNCTIONS

1. parPresH20.m
%%
%parPresH2O.m -- Partial Pressure of Water in the atmosphere
%
%J. Q. McClintic, 2012
%
%Inputs:
% ATP: atmospheric pressure in millibars
% temp: temperature in celcius
% dewpoint: current dewpoint temperature in celcius
%
%Outputs: PPW: partial pressure of water in millibars
%
%%
function[PPW] = parPresH2O(ATP, temp, dewpoint)

% Temperature Check
% If the temp is greater than 0 deg C, use the water
% curve, else the ice curve
if temp > 0

PPW = waterCurve(ATP, dewpoint);
else

PPW = iceCurve(ATP, dewpoint);
end %end if

end

%%
%waterCurve.m -- A function to compute the partial pressure
% of water assuming the air temperature is greater than 0
% degrees C
%
%Buck, A. New Equations for Computing Vapor Pressure and
%Enchancement Factor. Journal Of Applied Meteorology.
%December 1981, 1527-32.
%
%J. Q. McClintic, 2012
%
%Inputs:
% ATP: atmospheric pressure in millibars
% temp: temperature in celcius. ambient for pure water
% vapor, else dewpoint temperature

200

%
%Outputs: PPW: partial pressure of water in millibars
%%
function[PPW] = waterCurve(ATP, temp)

% Compute the unenchanced partial pressure of water

%declare the various parameters table 2, curve ew6
a = 6.1121;
b = 18.564;
c = 255.57;
d = 254.4;

% compute the partial pressure
Ew = a*exp(temp*(b - temp/d)/(temp + c));

% Compute the enhancement factor

% declare the various parameters
A = 7.2e-4;
B = 3.2e-6;
C = 5.9e-10;
D = 0; %included in case the choice of
E = 0; % cuves were to change

% compute the enhancement factor
f = 1 + A + ATP*(B + C*(temp + D + E*ATP)ˆ2);

% Compute the full partial pressure
PPW = Ew*f;

end

%%
%iceCurve.m -- A function to compute the partial pressure of
% water assuming the air temperature is less than 0
% degrees C
%
%Buck, A. New Equations for Computing Vapor Pressure and
%Enchancement Factor. Journal Of Applied Meteorology.
%December 1981, 1527-32.
%
%J. Q. McClintic, 2012
%

201

%Inputs:
% ATP: atmospheric pressure in millibars
% temp: temperature in celcius. ambient for pure water
% vapor, else dewpoint temperature
%
%Outputs: PPW: partial pressure of water in millibars
%
%%
function[PPW] = iceCurve(ATP, temp)

% Compute the unenchanced partial pressure of water

%declare the various parameters table 2, curve ei2
a = 6.1115;
b = 22.452;
c = 272.55;

% compute the partial pressure,
Ei = a*exp(b*temp/(temp + c));

% Compute the enhancement factor

% declare the various parameters
A = 3e-4;
B = 4.18e-6;
C = 0; %included in case the choice of
D = 0; % cuves were to change
E = 0;

% compute the enhancement factor
f = 1 + A + ATP*(B + C*(temp + D + E*ATP)ˆ2);

% Compute the full partial pressure
PPW = Ei*f;

end

2. refract.m
%%
% refract.m -- Refractivity Estimate based on Local
% Environmental Conditions
%

202

% Author: LTJG J. Q. McClintic, 6FEB12
%
% Inputs:
% temp--ambient temperature in degrees celcius
% dewpoint--dewpoint temperature in degrees celcius
% pressure--total atmospheric pressure in millibar
%
% Output: N--refractivity in parts per million assuming 375
% ppm atmospheric carbon dioxide content
%
% Note: uses Rueger (2002) as cited in the thesis as the
% basis for the formula
%%
function[N] = refract(temp, dewpoint, pressure)

% convert the total pressure to dry air and water vapor
% pressure
Pw = parPresH2O(pressure, temp, dewpoint); %partial pressure
% of water
Pd = pressure - Pw;%dry air is what is left

% Compute the refractivity estimate
K1 = 77.6890;%dry air coeffient
K2 = 71.2952;%wet air linear coefficient
K3 = 375463;%wet air second term coefficient
DK = temp+273.15;%convert temperature to degrees kelvin
N = K1*Pd/DK + K2*Pw/DK + K3*Pw/(DKˆ2);

end %End refract.m

3. refractiveProfile.m
%%
% refractiveProfile.m -- Refractivity Profile based on
% environmental inputs
%
% LTJG J. Q. McClintic, 6FEB12
%
% Inputs:
% temp--a vector of temperatures to plot over (100>=
% degrees C >=-50)

203

% dewpoint--a vector of dewpoint spreads to plot over (>=0
% degrees C)
% pressure--total atmospheric pressures (millibars)
% levels--number of levels to plot or a vector of levels
% to plot
% Outputs: a plot of refractivity curves, one for each
% pressure specified
%
%%
function[] = refractiveProfile(temp, dewpoint,...

pressure, levels)

% declare variables
nVals = zeros(length(temp), length(dewpoint));
%somwhere to hold all the data

% loop over each variable to make the proper curves
for t = 1:1:length(temp)%each tempurature specified

for d = 1:1:length(dewpoint)%each dewpoint spread
%specified

%compute
nVals(t,d) = ...

refract(temp(t), temp(t)-dewpoint(d), pressure);
end%end of dewpoint loop

end %end of temp loop

%display the output
figure()
[C, h] = contour(temp, dewpoint, transpose(nVals), levels);
title({[’Refractivity as a Function of Temperature’,...

’ and Dewpoint Spread’];...
[’Total Pressure ’,num2str(pressure),’ millibars’]})

xlabel(’Temperature (degrees C)’)
ylabel(’Dewpoint Spread (degrees C)’)
set(h,’ShowText’,’on’,’TextStep’,get(h,’LevelStep’))
end

4. velocityDifference.m
%%
%velocityDifference.m

204

%
%Computes the velocity difference between the speed of light
%in vacuum and in air.
%
%Inputs:
% nLower: lower bound on refractivity to plot (ppm)
% nUpper: upper bound on refractivity to plot (ppm)
% c: the speed of light in air. (meters/second)
% increment: increment between profile points. Smaller =
% higher resolution (ppm)
%
%Outputs: a vector with the profile
%%
function[out] = velocityDifference(c, nLower, ...

nUpper, increment)
%make output variable
out = [];
%make the array index variable
j = 1;
%convert refractivity to refractive index
lower = ppm2n(nLower);
upper = ppm2n(nUpper);
delta = increment/10ˆ6;
for i = lower:delta:upper

out(j) = c*(1-1/i);
j = j+1;

end
end

5. rangeBias.m
%%
% rangeBias--compute range estimage bias due to refractivity
%
% input:
% N0: the reference value of refractivity in parts per
% million
% N: the assumed value of refractivity in parts per million
% c: reference speed of light (meters/second)
% t: the time of flight of the signal (seconds)
%

205

% output: bias value in meters
%
%%
function[bias] = rangeBias(N0, N, c, t)

n0 = ppm2n(N0);%convert to refractive index
n = ppm2n(N);%convert to refractive index

%compute bias
bias = c*t*(n-n0)/(n*n0);

end

6. rangeBiasProfile.m
%%
%rangeBiasProfile.m
%
%plots the velocity difference between the speed of light in
%vacuum and
% in air.
%
%Inputs:
% N0: the reference value of refractivity in parts per
% million
% nLower: lower bound on refractivity to plot (ppm)
% nUpper: upper bound on refractivity to plot (ppm)
% c: vector of the speed of light in air. (each in m/s)
% t: the time of flight of the signal (seconds) increment:
% increment between profile points. Smaller = higher
% resolution (ppm)
% figNum: figure number for the plot
%
%Outputs: a graph
%%
function[] = rangeBiasProfile(N0, nLower, nUpper, c, t,...

increment, figNum)
%Variables to hold the various makers and colors for the
%different profiles
colors = [’r’, ’g’, ’b’, ’c’, ’m’, ’k’];
markers = [’+’, ’o’, ’*’, ’.’, ’x’];

%generate profile x positions

206

x = nLower:increment:nUpper;

%make an index counter and an empty vector to take output
y = zeros(length(x), length(c));

%generate the bias values
for k = 1:1:length(c)

for i = 1:1:length(x)
y(i, k) = rangeBias(N0, x(i), c(k), t);

end
end
%make the plot
figure(figNum)
xlim([nLower, nUpper]);%set the x limits
ylim([min(min(y)),max(max(y))]);%set the ylimits
for n = 1:1:length(c)

line(x, y(:,n), ’DisplayName’, ...
[’Speed of Light = ’,int2str(c(n)), ’ m/s’],...
’Color’, colors(mod(n,6)+1),...
’Marker’, markers(mod(n,5)+1))

end
title({’Range Estimate Bias Due to Refraction in Air’;...

[’With a Propogation Time of ’,int2str(t*10ˆ6),...
’ microseconds’]})

xlabel(’Refractivity (ppm)’)
ylabel(’Range Bias (meters)’)
legend show
legend(’Location’,’SouthOutside’)

end

7. rangeBiasTime.m
%%
% rangeBiasTime--compute range estimage bias as a function
% of time
% due to a given refractivity
%
% input:
% N0: the reference value of refractivity in parts per
% million
% N: the assumed value of refractivity in parts per million

207

% c: reference speed of light (meters/second)
% tMin: the minimum time of flight of the signal (seconds)
% tMax: the maximum time of flight of the signal (seconds)
% tInc: time increment over which to compute
%
% output: bias value in meters and time values in seconds
%
%%
function[bias, time] = rangeBiasTime(N0, N, c, tMin,...

tMax, tInc)
%make the values of time for which to evaluate the bias
time = tMin:tInc:tMax;
%make the bias values
bias = rangeBias(N0, N, c, time);

end

8. rangeBiasTimeProfile.m
%%
% rangeBiasTimeProfile--plot the range bias as a function of
% flight time given a set of refractivity values
%
% input:
% N0: the reference value of refractivity in parts per
% million
% N: a vector of assumed value of refractivity in parts per
% million
% c: reference speed of light (meters/second)
% tMin: the minimum time of flight of the signal
% (microseconds)
% tMax: the maximum time of flight of the signal
% (microseconds)
% tInc: time increment over which to compute (microseconds)
% title: whether or not to display the title. Boolean.
% figNum: the figure number for the plot
%
% output: a plot bias value in meters and time values in
% microseconds
% for each
% value of N. Up to thirty different lines are supported
% via unique color/maker combinations

208

%
%%
function[] = rangeBiasTimeProfile(N0, N, c, tMin, tMax,...

tInc, title,figNum)
validateattributes(N0, {’numeric’}, ...

{’nonempty’, ’scalar’},’’,’N0’)
validateattributes(N, {’numeric’}, ...

{’nonempty’, ’vector’},’’,’N’)
validateattributes(c, {’numeric’}, ...

{’nonempty’, ’scalar’, ’positive’},’’,’c’)
validateattributes(tMin, {’numeric’}, ...

{’nonempty’, ’scalar’, ’positive’},’’,’tMin’)
validateattributes(tMax, {’numeric’}, ...

{’nonempty’, ’scalar’, ’positive’,’>’,tMin},’’,’tMax’)
validateattributes(tMax, {’numeric’}, ...

{’nonempty’, ’scalar’, ’positive’},’’,’tInc’)
validateattributes(title,{’logical’},...

{’nonempty’},’’,’title’)
validateattributes(N0, {’numeric’}, ...

{’nonempty’, ’scalar’},’’,’figNum’)

bias = zeros(length(N), length(tMin:tInc:tMax));
time = tMin:tInc:tMax;
colors = [’r’, ’g’, ’b’, ’c’, ’m’, ’k’];
markers = [’+’, ’o’, ’*’, ’.’, ’x’];

for n = 1:1:length(N)
[bias(n, :),˜] = ...

rangeBiasTime(N0, N(n), c, ...
tMin/10ˆ6, tMax/10ˆ6, tInc/10ˆ6);

end

figure(figNum)
xlim([tMin, tMax])
ylim([min(min(bias)), max(max(bias))])
%make the lines for each curve
for n = 1:1:length(N)

line(time, bias(n,:), ’DisplayName’, ...
[’N = ’,int2str(N(n))], ...
’Color’, colors(mod(n,6)+1), ...
’Marker’, markers(mod(n,5)+1))

end

209

if title
title({[’Range Bias Against Propagation’,...

’ Time as a Function of Refractivity’];...
[’Speed of Light = ’,int2str(c),’ meters/second’]})

end
xlabel(’Propogation Time(microseconds)’)
ylabel(’Range Bias (meters)’)
legend show
legend(’Location’,’EastOutside’)
end

9. environmentalRangeBiasProfile.m
%%
% environmentalRangeBiasProfile.m --
% Refractivity Profile based on environmental inputs
%
% LTJG J. Q. McClintic, 6FEB12
%
% Inputs:
% temp--a vector of temperatures to plot over (100>=
% degrees C >=-50)
% dewpoint--a vector of dewpoint spreads to plot over (>=0
% degrees C)
% pressure--total atmospheric pressures (millibars)
% levels--number of levels to plot or a vector of levels
% to plot
% assumedN--assumed level of refractivity locally (ppm)
% time--reference flight time for signal (microseconds)
% SOL--assumed speed of light in vacuum (meters/second)
% Outputs: a plot of range bias curves
%
%%
function[] = environmentalRangeBiasProfile(temp, ...

dewpoint, pressure, levels, assumedN, time, SOL)

% declare variables
bias = zeros(length(temp), length(dewpoint));
%somwhere to hold all the data

% loop over each variable to make the proper curves

210

for t = 1:1:length(temp)%each tempurature specified
for d = 1:1:length(dewpoint)%each dewpoint spred

%specified compute
N = ...

refract(temp(t), temp(t)-dewpoint(d), pressure);
bias(t,d) = rangeBias(assumedN, N, SOL, time/10ˆ6);

end%end of dewpoint loop
end %end of temp loop

% display the output
figure()
[˜, h] = contour(temp, dewpoint, transpose(bias), levels);
title({[’Range Bias (meters) as a Function of’,...

’ Temperature and Dewpoint Spread’];...
[’Total Pressure ’,num2str(pressure),’ millibars’];
[’Nominal Flight Time: ’, num2str(time),...
’ microseconds’];[’Reference Refractivity: ’, ...
num2mstr(assumedN), ’ ppm’];
[’Speed of Light: ’, num2str(SOL), ’ m/s’]})

xlabel(’Temperature (degrees C)’)
ylabel(’Dewpoint Spread (degrees C)’)
set(h,’ShowText’,’on’,’TextStep’,get(h,’LevelStep’))
end

10. rb2tauPlot.m
function [] = rb2tauPlot(tauRange, N0, NHatRange , ...
resolution, contours, refBW)
%rb2tauPlot Plots the ratio of range bias and timing advance
%unit error standard deviation. The ratio is given by
%10e-6*sqrt(12)*(n - n0)/(n*tau) where n is the assumed
%refractive index, n0 is the true refractive index, and tau
%is the timing adjust unit in seconds.
% Inputs:
% tauRange--a 2x1 vector of the min and max timing
% advance unit
% N0--The reference refractivity
% NHatRange--a 2x1 vector of the min and max
% refractivity to plot resolution--the number of points
% to plot in each direction contours--either the number
% of contours to plot or a vector of levels. Is passed

211

% directly to contour.m.
% refBW--a possibly empty vector of system bandwidths to
% plot as references in MHz.

%validate attributes
validateattributes(tauRange,{’numeric’},...

{’nonempty’,’vector’,’numel’,2,’positive’},’’,’tauRange’)
validateattributes(N0,{’numeric’},...

{’nonempty’,’scalar’},’’,’N0’)
validateattributes(NHatRange,{’numeric’},...

{’nonempty’,’vector’,’numel’,2},’’,’tauRange’)
validateattributes(resolution,{’numeric’},...

{’nonempty’,’scalar’,’positive’},’’,’resolution’)
validateattributes(contours,{’numeric’},...

{’nonempty’},’’,’contours’)
if nargin == 6%that is, if refBW is provided

validateattributes(refBW,{’numeric’},...
{’vector’,’positive’},’’,’refBW’)

end%

%force tauRange and NHatRange to be properly ordered
tauRange = sort(tauRange);
NHatRange = sort(NHatRange);

%compute the lower and upper limits of refractive index and
%the reference refractive index
N0 = 1+N0/1e6;
NHatRange = 1+NHatRange/1e6;

%compute the values for the axes of the plot
yVals = linspace(NHatRange(1),NHatRange(2),resolution);
xVals = linspace(tauRange(1),tauRange(2),resolution);

%compute the matrix of values
rMat = zeros(length(xVals),length(yVals));
for x = 1:1:length(xVals)

for y = 1:1:length(yVals)
%The x and y need to be flipped because contour uses
rMat(y,x) = ...

(sqrt(12)*10e-6)*(yVals(y) - N0)/...
(xVals(x)*yVals(y));

end%loop over y values

212

end%loop over x values

%Generate the contour plot
[˜,h] = contour(xVals.*1e9, (yVals-1).*1e6,...

rMat, contours,...
’DisplayName’,’b_d / \sigma\{\epsilon_\tau\}’);

set(h,’ShowText’,’on’,’TextStep’,get(h,’LevelStep’)*2)
ylabel(’Refractivity (ppm)’)
xlabel(’Timing Advance Unit (nanoseconds)’)

%add the refBW lines
if nargin == 6

colors = [’r’, ’g’, ’b’, ’c’, ’m’, ’k’];
markers = [’+’, ’o’, ’*’, ’.’, ’x’];
hold on;
for ind = 1:1:length(refBW)

%determine the equivilent timing adjust unit
tau = timingAdjustUnit(refBW(ind));
%plot a vertical line with x = timing adjust unit from
%the bottom of the refractivity range to the top of
%the refractivity range
line([tau tau].*1e9, ...

(NHatRange - 1).*10ˆ6,...
’DisplayName’, ...
[’BW = ’,int2str(refBW(ind)),’MHz’], ...
’Color’, colors(mod(ind,6)+1), ’Marker’,...
markers(mod(ind,5)+1));

end%end loop over refBW values
end%add the refBW lines

%show the legend
legend show ’Location’ Best

end%rb2tauPlot

function[n] = sampFactor(BW)
if mod(BW, 1.75)==0

n = 8/7;
elseif mod(BW, 1.25)==0

n = 28/25;
else

n = 8/7;

213

end%end if
end%sampFactor

function[tau] = timingAdjustUnit(BW)
tau = 1/(floor(1e6*sampFactor(BW)*BW/8000)*8000);

end%timingAdjustUnit

214

C. EXAMPLE SIMULATION SCRIPT

%%
% Simulation Script
%
% J. Q. McClintic
%
% 01 DEC 12
%
% NOTE: THIS SCRIPT WILL CLEAR YOUR MATLAB WORKSPACE AND
% TERMINAL
%
% INSTRUCTIONS: Simulation parameters are found in the
% appropriate cell with instructions. Any parameters common
% to multiple cells are in the ‘‘Simulation Parameters" cell
%
% INPUTS: See the comments associated with the various
% settable parameters (parameter names are in ALL_CAPS
% unless otherwise specified)
%
% OUTPUTS: (some may be commented out and ergo not
% collected)
% meanL2: a vector of the mean L2 error for each run
% meanL1: a vector of the mean L1 error for each run
% meanLinf: a vector of the mean L-infinity error for each
% run
% sdL2: a vector of the standard deviation of the L2 error
% for each run
% sdL2: a vector of the standard deviation of the L1 error
% for each run
% sdL2: a vector of the standard deviation of the L
% -infinity error for each run
% medianL2: a vector of the median L2 error for each run
% medianL1: a vector of the median L1 error for each run
% medianLinf: a vector of the median Linf error for each run
% minL2: a vector of the minimum L2 error for each run
% minL1: a vector of the minimum L1 error for each run
% minLinf: a vector of the minimum L-infinity error for each
% run
% maxL2: a vector of the minimum L2 error for each run
% maxL1: a vector of the minimum L1 error for each run

215

% maxLinf: a vector of the minimum L-infinity error for each
% run
% skewL2: a vector of the skew of the L2 errors for each run
% skewL1: a vector of the skew of the L1 errors for each run
% skewLinf: a vector of the skew of the L-infinity errors
% for each run
% kurtL2: a vector of the kurtosis of the L2 errors for each
% run
% kurtL1: a vector of the kurtosis of the L1 errors for each
% run
% kurtLinf: a vector of the kurtosis of the L-infinity
% errors for each run
% iqrL2: interquartile range of L2 errors
% iqrL1: interquartile range of L1 errors
% iqrLinf: interquartile range of Linf errors
%
% NOTE: The workspace is saved at the end of each completed
% run after deleting the excess objects. This means that in
% the event of failure some data still remains. The path to
% the file to be saved to must be set manually at the end of
% this file.
%%

clear
clc

%% Simulation Parameters
N_RUNS = 1000; % Number of runs of the basic simulation to
%be averaged
TYPE = ’TOA4’; % Sets whether to look at ’POSITION’ or
%’VELOCITY’ error
rng(2)%set the initial seed to a fixed, arbitrary value
seeds = randi(N_RUNS, [N_RUNS,1]);%generate the seed for
%each run

%% Set up the Environment
%Parameters
AIR_PRESS = 1000;% Air pressure in millibar
TEMP = 30; %Ambient air pressure in degrees Celcius
DEWPOINT = 20; %Dewpoint temperature in degrees Celcius

%Set up the environment object

216

ENV = Geolocation.Environment(AIR_PRESS, TEMP, DEWPOINT);

%% Refractivity Settings
% Uncomment one of the following lines
N = getRefractivity(ENV); % actual refractivity of the

%simulated atmosphere
%N = -692; % assume speed of light is 3e8 m/s
%N = 0; % assume NIST true speed of light

%% Set up the Generic Network
% Network Parameters
N_TOWERS = 50; % Number of towers
BANDWIDTH = 10; % Bandwidth of any tower in Megahertz
N_USED = 1024; % Number of subcarriers used (including DC

%subcarrier)
G = 1/32; % Ratio of CP time to ‘‘useful" time.

% Set up the network
NWK = Geolocation.Network(N_TOWERS, BANDWIDTH, N_USED, G);

%% Tower locations
% If random tower placement is desired for each run,
% uncomment this line and comment out
% the other commands in this cell

RANDOM_TOWERS = true;
MAX_X = 10000;%Max +/- value of the x-component of position
MAX_Y = 10000;%Max +/- value of the y-component of position
MAX_Z = 100;%Max +/- value of the z-component of position

% If you want to place towers is specific locations, then
% comment out the commands above in this cell, uncomment the
% ones below, and provide a placeTower command call for each
% tower you want. Locations are given in cartesian
% corrdinates in the second argument as a vector.

% placeTower(NWK, [5000 5000 100], 1);
% placeTower(NWK, [-5000 -5000 -100], 2);
% placeTower(NWK, [5000 -5000 50], 3);
% placeTower(NWK, [-5000 5000 -50], 4);
% placeTower(NWK, [0 0 0], 5);

217

%% Target Parameters
% Set the target parameters that will be use for each trial
% run.
N_TARGETS = 5000; % Number of targets to create
TARGET_LIMS = [10000, 10000, 100]; % +/- x, y, and z limits

%on position
VELOCITY = 10; % max velocity in any direction
CENTER_F = [5.725e9 5.875e9]; % target center transmitted

%frequency

%% Simulations Loop
% Set up places to hold the various statistics
meanL2 = zeros(N_RUNS, 1);
meanL1 = zeros(N_RUNS, 1);
meanLinf = zeros(N_RUNS, 1);
sdL2 = zeros(N_RUNS, 1);
sdL1 = zeros(N_RUNS, 1);
sdLinf = zeros(N_RUNS, 1);
medianL2 = zeros(N_RUNS, 1);
medianL1 = zeros(N_RUNS, 1);
medianLinf = zeros(N_RUNS, 1);
minL2 = zeros(N_RUNS, 1);
minL1 = zeros(N_RUNS, 1);
minLinf = zeros(N_RUNS, 1);
maxL2 = zeros(N_RUNS, 1);
maxL1 = zeros(N_RUNS, 1);
maxLinf = zeros(N_RUNS, 1);
skewL2 = zeros(N_RUNS, 1);
skewL1 = zeros(N_RUNS, 1);
skewLinf = zeros(N_RUNS, 1);
kurtL2 = zeros(N_RUNS, 1);
kurtL1 = zeros(N_RUNS, 1);
kurtLinf = zeros(N_RUNS, 1);
iqrL2 = zeros(N_RUNS, 1);
iqrL1 = zeros(N_RUNS, 1);
iqrLinf = zeros(N_RUNS, 1);

% Loop through all the simulation runs

h = waitbar(0,’Please wait...’);% set up a waitbar
for run = 1:1:N_RUNS

%waitbar

218

waitbar(run/N_RUNS)

%seed the random number generator for this run
rng(seeds(run))

% make random towers for the run if desired by user
if RANDOM_TOWERS == true

randomTowers(NWK, [MAX_X, MAX_Y, MAX_Z]);
end

% make the targets for this run
TGT = Geolocation.Target(N_TARGETS);
randomTarget(TGT, TARGET_LIMS, VELOCITY, CENTER_F)

% make the dataset
DATA = Geolocation.Data(ENV, NWK, TGT);

% compute estimates and errors for desired estimate type
switch TYPE

case ’TOA4’
ESTIMATE = ...

Geolocation.Analysis.TOA4(ENV, NWK, DATA, N);
ERROR = ...

Geolocation.Analysis.PositionError(TGT,...
ESTIMATE);

case ’TOA4A’
ESTIMATE = ...

Geolocation.Analysis.TOA4A(ENV, NWK, DATA, N);
ERROR = ...

Geolocation.Analysis.PositionError(TGT,...
ESTIMATE);

case ’TOA4B’
ESTIMATE = ...

Geolocation.Analysis.TOA4B(ENV, NWK, DATA, N);
ERROR = ...

Geolocation.Analysis.PositionError(TGT,...
ESTIMATE);

case ’TDOA4’
ESTIMATE = ...

Geolocation.Analysis.TDOA5(ENV, NWK, DATA, N);
ERROR = ...

Geolocation.Analysis.PositionError(TGT, ...

219

ESTIMATE);
case ’TDOA4A’

ESTIMATE = ...
Geolocation.Analysis.TDOA5A(ENV, NWK, DATA, N);

ERROR = ...
Geolocation.Analysis.PositionError(TGT, ...
ESTIMATE);

case ’TDOA4B’
ESTIMATE = ...

Geolocation.Analysis.TDOA5B(ENV, NWK, DATA, N);
ERROR = Geolocation.Analysis.PositionError(TGT, ...

ESTIMATE);
case ’DOPPLER4’

ESTIMATE = ...
Geolocation.Analysis.Doppler4(ENV, NWK,...
DATA, N);

ERROR = Geolocation.Analysis.VelocityError(TGT, ...
ESTIMATE);

case ’DOPPLER4A’
ESTIMATE = ...

Geolocation.Analysis.Doppler4A(ENV, NWK,...
DATA, N);

ERROR = Geolocation.Analysis.VelocityError(TGT, ...
ESTIMATE);

case ’DOPPLER4B’
ESTIMATE = ...

Geolocation.Analysis.Doppler4B(ENV, NWK,...
DATA, N);

ERROR = Geolocation.Analysis.VelocityError(TGT,...
ESTIMATE);

otherwise
error(’Invalid Analysis Type.’)

end% end switch for analysis type

% compute and place the various statistics in their
% holding vectors
meanL2(run) = mean(ERROR.L2);
%meanL1(run) = mean(ERROR.L1);
%meanLinf(run) = mean(ERROR.Linf);
sdL2(run) = std(ERROR.L2);
%sdL1(run) = std(ERROR.L1);
%sdLinf(run) = std(ERROR.Linf);

220

medianL2(run) = median(ERROR.L2);
%medianL1(run) = median(ERROR.L1);
%medianLinf(run) = median(ERROR.Linf);
%minL2(run) = min(ERROR.L2);
%minL1(run) = min(ERROR.L1);
%minLinf(run) = min(ERROR.Linf);
%maxL2(run) = max(ERROR.L2);
%maxL1(run) = max(ERROR.L1);
%maxLinf(run) = max(ERROR.Linf);
%skewL2(run) = skewness(ERROR.L2);
%skewL1(run) = skewness(ERROR.L1);
%skewLinf(run) = skewness(ERROR.Linf);
%kurtL2(run) = kurtosis(ERROR.L2) - 3;
%kurtL1(run) = kurtosis(ERROR.L1) - 3;
%kurtLinf(run) = kurtosis(ERROR.Linf) - 3;
iqrL2(run) = iqr(ERROR.L2);
%iqrL1(run) = iqr(ERROR.L1);
%iqrLinf(run) = iqr(ERROR.Linf);

% clear all the objects no longer needed from this run
clear TGT
clear ESTIMATE
clear ERROR

%output some status markers
disp([’Run: ’,num2str(run),’ of ’,...

num2str(N_RUNS),’ complete.’])
time = clock;
time(4:6)

%save the results so far. This will overwrite whatever
%file with the given name exists in the folder in the
%path.
save([’\\special\jqmcclin$\ThesisCode’,...

’\ThesisSims\TOA\test.mat’]);
end%end main simulation loop
close(h)% close the waitbar
time = clock;
time(4:6)

221

THIS PAGE INTENTIONALLY LEFT BLANK

222

LIST OF REFERENCES

[1] IEEE Standard for Local and Metropolitan Area Networks and the Wireless Access
Systems Part 16: Air Interface for Broadband, IEEE Standard 802, 2009. [Online].
Available: http://standards.ieee.org/about/get/802/802.16.html

[2] R. D. Whitty, “Three-dimensional geolocation of mobile wimax subscribers,” M.S.
thesis, Naval Postgraduate School, Dec. 2010.

[3] Y. Zhao, “Standardization of mobile phone positioning for 3g systems,” IEEE Com-
munications Magazine, vol. 40, no. 7, pp. 108 –116, July 2002.

[4] S. S. Soliman and C. E. Wheatley, “Geolocation technologies and applications for
third generation wireless,” Wireless Communications and Mobile Computing, vol. 2,
no. 3, pp. 229–251, 2002. [Online]. Available: http://dx.doi.org/10.1002/wcm.55

[5] A. Aloudat and K. Michael, “Toward the regulation of ubiquitous mobile govern-
ment: a case study on location-based emergency services in Australia,” Electronic
Commerce Research, vol. 11, no. 1, pp. 31–74, 2011.

[6] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless networks: pos-
sibilities and fundamental limitations based on available wireless network measure-
ments,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 41–53, Jul. 2005.

[7] K. Cheung, W. Ma, and H. So, “Accurate approximation algorithm for TOA-based
maximum likelihood mobile location using semidefinite programming,” in Proceed-
ings of the IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP ’04), vol. 2, May 2004, pp. 145–148.

[8] J. Caffery and G. Stuber, “Overview of radiolocation in CDMA cellular systems,”
IEEE Communications Magazine, vol. 36, no. 4, pp. 38–45, Apr. 1998.

[9] K. Cheung, H. So, W.-K. Ma, and Y. Chan, “Least squares algorithms for time-of-
arrival-based mobile location,” IEEE Transactions on Signal Processing, vol. 52,
no. 4, pp. 1121–1130, Apr. 2004.

[10] K. Cheung and H. So, “A multidimensional scaling framework for mobile location us-
ing time-of-arrival measurements,” IEEE Transactions on Signal Processing, vol. 53,
no. 2, pp. 460–470, Feb. 2005.

[11] L. Cong and W. Zhuang, “Hybrid TDOA/AOA mobile user location for wideband
CDMA cellular systems,” IEEE Transactions on Wireless Communications, vol. 1,
no. 3, pp. 439–447, Jul. 2002.

[12] Anonymous, “Follow me.” Economist, vol. 394, no. 8672, p. 85, 2010.

223

[13] E. G. Bakhoum, “Closed-form solution of hyperbolic geolocation equations,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 42, no. 4, pp. 1396–1404,
Oct. 2006.

[14] J. Caffery Jr., “A new approach to the geometry of TOA location,” in 52nd IEEE
Vehicular Technology Conference (IEEE VTS-Fall VTC), vol. 4, 2000, pp. 1943–1949.

[15] H. Koorapaty, H. Grubeck, and M. Cedervall, “Effect of biased measurement errors
on accuracy of position location methods,” in The Bridge to Global Integration. IEEE
Global Telecommunications Conference, 1998 (GLOBECOM 98), vol. 3, 1998, pp.
1497–1502.

[16] D. Barber and J. McEachen, “Geolocation of WiMAX subscriber stations based on
the timing adjust ranging parameter,” in 4th International Conference on Signal Pro-
cessing and Communication Systems (ICSPCS), Dec. 2010, pp. 1–5.

[17] S. Drake and K. Dogancay, “Geolocation by time difference of arrival using hyper-
bolic asymptotes,” in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’04)., vol. 2, no. 2, May 2004, pp. 361–364.

[18] D. Torrieri, “Statistical theory of passive location systems,” IEEE Transactions on
Aerospace and Electronic Systems, vol. AES-20, no. 2, pp. 183–198, Mar. 1984.

[19] A. Roxin, J. Gaber, M. Wack, and A. Nait-Sidi-Moh, “Survey of wireless geolocation
techniques,” in IEEE Globecom Workshops, Nov. 2007, pp. 1–9.

[20] T. Li, A. Ekpenyong, and Y.-F. Huang, “Source localization and tracking using dis-
tributed asynchronous sensors,” IEEE Transactions on Signal Processing, vol. 54,
no. 10, pp. 3991–4003, Oct. 2006.

[21] B. Fang, “Simple solutions for hyperbolic and related position fixes,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 26, no. 5, pp. 748–753, Sep. 1990.

[22] J. Abel, “A divide and conquer approach to least-squares estimation with applica-
tion to range-difference-based localization,” in International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP-89), vol. 4, May 1989, pp. 2144–2147.

[23] Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE
Transactions onSignal Processing, vol. 42, no. 8, pp. 1905–1915, Aug. 1994.

[24] K. Ho and Y. Chan, “Solution and performance analysis of geolocation by TDOA,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1311–
1322, Oct. 1993.

[25] K. Ho and Y. Chan, “Geolocation of a known altitude object from TDOA and FDOA
measurements,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33,
no. 3, pp. 770–783, Jul. 1997.

224

[26] K. Ho and W. Xu, “An accurate algebraic solution for moving source location using
TDOA and FDOA measurements,” IEEE Transactions on Signal Processing, vol. 52,
no. 9, pp. 2453–2463, Sep. 2004.

[27] A. Bishop, B. Fidan, B. Anderson, K. Dogancay, and P. Pathirana, “Optimal range-
difference-based localization considering geometrical constraints,” IEEE Journal of
Oceanic Engineering, vol. 33, no. 3, pp. 289 –301, Jul. 2008.

[28] A. Urruela, J. Sala, and J. Riba, “Average performance analysis of circular and hyper-
bolic geolocation,” IEEE Transactions on Vehicular Technology, vol. 55, no. 1, pp.
52–66, Jan. 2006.

[29] A. Amar and A. Weiss, “Localization of narrowband radio emitters based on Doppler
frequency shifts,” IEEE Transactions on Signal Processing, vol. 56, no. 11, pp. 5500–
5508, Nov. 2008.

[30] M. Bshara, U. Orguner, F. Gustafsson, and L. Van Biesen, “Fingerprinting localization
in wireless networks based on received-signal-strength measurements: A case study
on WiMAX networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 1,
pp. 283–294, Jan. 2010.

[31] K. Pahlavan, F. O. Akgul, M. Heidari, A. Hatami, J. M. Elwell, and R. D. Tingley,
“Indoor geolocation in the absence of direct path,” IEEE Wireless Communications,
vol. 13, no. 6, pp. 50–58, Dec. 2006.

[32] Y. Qi, H. Kobayashi, and H. Suda, “Analysis of wireless geolocation in a non-line-
of-sight environment,” IEEE Transactions on Wireless Communications, vol. 5, no. 3,
pp. 672–681, Mar. 2006.

[33] H. Miao, K. Yu, and M. Juntti, “Positioning for NLOS propagation: Algorithm deriva-
tions and Cramer-Rao bounds,” IEEE Transactions on Vehicular Technology, vol. 56,
no. 5, pp. 2568–2580, Sep. 2007.

[34] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 9th ed. Wiley,
2011, vol. 2.

[35] S. Laurila, Electronic Surveying and Navigation. Wiley, 1976.

[36] J. M. Rüeger, “Refractive index formulae for radio waves,” in Proceedings of the
XXII FIG International Congress. International Federation of Surveyors, Apr. 2002.
[Online]. Available: http://www.fig.net/pub/fig 2002/Js28/JS28 rueger.pdf

[37] A. L. Buck, “New equations for computing vapor pressure and enhancement factor,”
Journal of Applied Meteorology, vol. 20, no. 12, pp. 1527–1532, 1981.

[38] B. Bean and G. Thayer, “Models of the atmospheric radio refractive index,” Proceed-
ings of the IRE, vol. 47, no. 5, pp. 740–755, May 1959.

225

[39] B. Bean, “The radio refractive index of air,” Proceedings of the IRE, vol. 50, no. 3,
pp. 260–273, Mar. 1962.

[40] K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive
index of air,” Metrologia, vol. 30, no. 3, p. 155, 1993. [Online]. Available:
http://stacks.iop.org/0026-1394/30/i=3/a=004

[41] J. Boehm, R. Heinkelmann, P. J. Mendes Cerveira, A. Pany, and H. Schuh, “Atmo-
spheric loading corrections at the observation level in VLBI analysis,” Journal of
Geodesy, vol. 83, no. 11, pp. 1107–1113, 2009.

[42] K. P. Birch and M. J. Downs, “The results of a comparison between calculated
and measured values of the refractive index of air,” Journal of Physics E:
Scientific Instruments, vol. 21, no. 7, p. 694, 1988. [Online]. Available:
http://stacks.iop.org/0022-3735/21/i=7/a=015

[43] S. Falodun and M. Ajewole, “Radio refractive index in the lowest 100-m layer of
the troposphere in Akure, South Western Nigeria,” Journal of Atmospheric and
Solar-Terrestrial Physics, vol. 68, no. 2, pp. 236–243, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364682605002907

[44] G. Chartrand, Introductory Graph Theory. Dover, 1985.

[45] CRC Handbook of Standard Mathematical Tables and Formulae, 29th ed., CRC, Boca
Raton, FL, 1991.

[46] R. Miles and K. Hamilton, Learning UML 2.0, 1st ed. O’Reilly, Apr. 2006.

[47] M. A. Lombardi, “The use of GPS disciplined oscillators as primary frequency stan-
dards for calibration and metrology laboratories,” NCLSI Measure J. Meas. Sci.,
vol. 3, no. 3, Sep. 2008.

[48] IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and
Time Metrology – Random Instabilities, IEEE Standard 1139, 2008.

[49] MATLAB Object-Oriented Programming, R2012b ed., MathWorks, Natick, MA,
2012. [Online]. Available: www.mathworks.com/help/pdf doc/matlab/matlab oop.
pdf

226

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Clark Robertson
Naval Postgraduate School
Monterey, CA

4. Dr. Murali Tummala
Naval Postgraduate School
Monterey, CA

5. Dr. John McEachen
Naval Postgraduate School
Monterey, CA

6. Jason McClintic
Naval Postgraduate School
Monterey, CA

7. CDR Owen Schoolsky, USN
Navy Special Warfare Command
N39/Force Tactical Information Operations Officer
Coronado, CA

227

	Cover Page
	SF 298
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Executive Summary
	Acknowledgments
	I Introduction
	A Background
	B Related Work
	C Objectives and Approach
	D Organization

	II Theory and Background
	A Geolocation of Emitters
	B Geolocation using Range Estimates
	1 Spatial Model
	2 Time of Arrival Algorithms
	3 Time Difference of Arrival Algorithms

	C Velocity Estimation from Frequency Information
	1 Spatial Model and the Doppler Equation
	2 Doppler Velocity Estimation with a Known Transmitted Frequency

	D Refractive Index and Refractivity
	E Estimating the Refractivity of Air
	1 Empirical Formulae for Refractivity Estimation
	2 Partial Pressure of Dry Air and Water Vapor

	F IEEE 802.16
	1 OFDMA Waveform
	2 Network Specification
	3 Synchronization and Ranging
	4 Extracting Time and Frequency Information

	III Biases Arising From Refractivity Mismatch
	A Propagation Velocity Bias
	B Range Estimate Bias
	C Target Velocity Bias

	IV Receiver Pair Selection
	A Terminology
	1 Notation
	2 Choosing Linear Constraints

	B Application to Circular Multilateration
	1 Receiver Pair Choice Algorithm
	2 Computational Complexity

	C Application to Hyperbolic Multilateration
	1 Modified TDOA Position Estimation Algorithm
	2 Receiver Pair Choice Algorithm
	3 Computational Complexity

	D Application to Doppler Velocity Estimation

	V Simulation and Results
	A Simulation Process
	B Class Structure of the Simulation Software
	1 Environment Classes
	2 Network Class
	3 Target Classes
	4 Data Classes
	5 Analysis Subpackage
	a TDOA Class Family
	b TOA Class Family
	c Doppler Class Family
	d PositionError Class
	e VelocityError Class
	f Graph Class

	C Simulation Design
	1 Exogenous Variables
	2 Error Structure
	3 Impact of Receiver Choice on Randomly Distributed Targets
	4 Impact of Refractivity
	5 A First Look at the Tracking Problem

	D Results
	1 Receiver Choice
	2 Refractivity Effects
	3 Tracking

	E Discussion

	VI Conclusion
	A Summary of Work
	B Significant Results
	C Future Work

	APPENDIX A A Brief Introduction To UML Diagrams
	A Class Diagrams
	B Activity Diagrams

	APPENDIX B MATLAB Code Implementing the Geolocation Package
	A Environment Class Family
	1 Environment Class
	2 ExampleEnvironment Class

	B Network Class Family
	C Target and its Related Classes
	1 Target Class
	2 RandomTarget Class
	3 CVFWTarget Class
	4 CVRWTarget Class

	D Data and its Related Classes
	1 Data Class
	2 SimulatedData Class
	3 UserData Class

	E The Analysis Subpackage
	1 Doppler
	2 Doppler4
	3 Doppler4A
	4 Graph
	5 PositionError Class
	6 TDOA Class
	7 TDOA5 Class
	8 TDOA5A Class
	9 TDOA5B Class
	10 TOA Class
	11 TOA4 Class
	12 TOA4A Class
	13 TOA4B Class
	14 VelocityError Class

	F Utility Functions
	1 parPresH20.m
	2 refract.m
	3 refractiveProfile.m
	4 velocityDifference.m
	5 rangeBias.m
	6 rangeBiasProfile.m
	7 rangeBiasTime.m
	8 rangeBiasTimeProfile.m
	9 environmentalRangeBiasProfile.m
	10 rb2tauPlot.m

	APPENDIX C Example Simulation Script
	LIST OF REFERENCES
	List of References

	INITIAL DISTRIBUTION LIST
	Initial Distribution List

